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Abstract—This article introduces a method that can 
automatically classify the hemiplegia type (right or left side of 
the body is paralyzed) between healthy and non-healthy 
subjects. The proposed method utilizes the data taken from 
the accelerometer sensor of the RehaGait mobile gait analysis 
system. These data undergo a pre-processing and feature 
extraction stage before being sent as input to a scaled 
conjugate gradient backpropagation (SCG-BP) trained 
neural network. The proposed system is tested using a custom-
created dataset containing 10 healthy and 20 patients 
suffering from hemiplegia (right or left). The experimental 
part of the system utilized 7 sensors placed on the left and 
right foot, the left and right shank, the left and right thigh, 
and the hip of each subject. Each sensor captured a 3-
dimensional (3D) signal from 3 different device types: 
accelerometer, magnetometer, and gyroscope. The system 
utilized and split into 2-second windows only the 
accelerometer data, achieving a classification accuracy of 
87.71%. 

Keywords—accelerometer, backpropagation, feature 
extraction, neural network, scaled conjugate gradient,  

I. INTRODUCTION 
Hemiplegia is a condition that affects people who have 

suffered a severe stroke and causes damage to a portion of 
the brain. The human central nervous system is an 
extensive network with interconnected neurons having 
feedback and feed-forward communication types. The 2 
sides (left and right) of the central nervous system are 
interconnected together at every level of the neuraxis. 
When a part of the brain is damaged, the communication 
loss of the damaged part affects the entire brain. The 
normal operating parts of the brain do not receive 
information from the damaged area. Also, they are prone to 
erroneous brain signals and misinformation generated as an 
outcome of the lesion. For this reason, the stroke victim will 
face difficulties in both body sides, which will be extended 
to some degree in all brain functions. The outcome from 
these difficulties will be motor impairment, affecting the 
patient’s balance and movement coordination [1-3]. 

The current study aims to automatically detect the 
hemiplegia type (right or left side of the body is paralyzed) 
in a group of hemiplegic and non-hemiplegic subjects. The 

purpose behind creating such an automated tool is to 
provide a supplementary diagnostic tool that will help the 
doctors diagnose the 2 hemiplegia types mentioned above. 
The automatic detection is achieved by placing 7 sensors in 
4 different body parts of the patient. These body parts are 
the left and right foot, the left and right shank, the left and 
right thigh, and the subject’s hip. The sensors are part of the 
RehaGait mobile gait analysis system by HASOMED [4, 
5]. The advantages of the RehaGait mobile analysis system 
include: 
 
• Monitoring the patient’s condition with the utilization 

of an integrated video capture function. 
• Determining the damaged areas. 
• Evaluating the gait pattern. 
• Identifying asymmetries in the lower limbs. 
• Mobile use without the need for a gait lab. 
• Movement freedom. 
• Graphical representation of the results. 
 

Each sensor captured a 3-dimensional (3D) signal from 
3 different device types: accelerometer, magnetometer, and 
gyroscope. The proposed system utilized the accelerometer 
data which were split into 2-second windows and 
underwent a pre-processing and feature extraction stage. 
Then, the extracted features were sent as input to a scaled 
conjugate gradient backpropagation (SCG-BP) trained 
neural network. The neural network was trained using a 
custom-created dataset comprised of 10 healthy and 20 
patients suffering from hemiplegia (right or left). 

Existing works are focused on various aspects of 
hemiplegia. Abaid et al. [6] proposed a gait phase detection 
method which utilizes gyroscope data taken from the 
subject’s feet. The authors tested the algorithm in a dataset 
containing data from healthy children and children with 
hemiplegia. Patil et al. [7] used a convolutional neural 
network (CNN) to analyze the gait characteristics of human 
subjects. The system can distinguish between healthy and 
hemiplegic subjects by taking into consideration their 
posture and walking pattern. Cai et al. [8] tested a number 
of machine learning methods for detecting common 
compensatory movement patterns in stroke patients with 
hemiplegia using a pressure distribution mattress. The k-
nearest neighbor (KNN) and support vector machine 
(SVM) classifiers managed to achieve the highest accuracy 
in the binary classification problem of detecting 
compensation during all reaching tasks. SVM achieved a 
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good classification performance in the multiclass 
classification problem of compensatory movement patterns 
during 3 types of reaching tasks (trunk lean-forward, 
scapular elevation, and trunk rotation). Park et al. [9] 
created a wearable inertial signal measurement module for 
simplifying hemiplegia’s measurement and diagnosis. The 
module can observe leg motion caused by gait using a 3-
axis acceleration sensor and 3-axis angular velocity sensor. 
Aguilera and Subero [10] used data mining techniques and 
classification algorithms to investigate kinematic, kinetic, 
and electromyographic (EMG) data from children having 
spastic hemiplegia with the purpose of finding useful gait 
patterns. Suzuki et al. [11] used a non-linear SVM to 
investigate the relationship between grip strength and self-
care activities in post-stroke hemiplegia patients. Azlan et 
al. [12] created a hand gesture recognition system based on 
the Leap Motion controller for hemiplegia patients. The 
system aims at encouraging patients’ motor function. 
Goyal et al. [13] developed a number of gait features for 
detecting 4 severe neurological disorders (Parkinson’s 
disease, diplegia, hemiplegia, and Huntington’s chorea) in 
videos. Nozaki and Watanabe [14] used an artificial neural 
network (ANN) to automatically detect movement state in 
stride for estimating stride length of a hemiplegic gait. 
Pandit et al. [15] utilized transfer learning in the Inception 
v3 CNN to classify 4 walking styles (regular walk, 
hemiplegic gait, diplegic gait, and Parkinsonian gait). The 
CNN used the accelerometer and gyroscope data 
transmitted from 4 wireless body adhering modules which 
were converted to images. Potluri et al. [16] used a 
wearable system combining a plantar pressure 
measurement unit with inertial measurement units (IMUs). 
The data received from this system were introduced to a 
stacked long short-term memory (LSTM) neural network 
which was responsible for detecting human gait 
abnormalities. The abnormalities include hemiplegic, 
Parkinsonian and sensory-ataxic gaits. Ji et al. [17] 
captured the tibialis anterior muscle’s acceleration signals 
from 2 different subject groups (healthy and hemiplegic). 
The recordings were done during ground walking, and 2 
core gait events were detected (heel strike and toe-off) by a 
continuous wavelet transform algorithm having different 
mother wavelets. Lemoyne and Mastroianni [18] utilize the 
internal accelerometer of an Apple iPhone in combination 
with a software application to create a wireless 
accelerometer platform. The platform utilizes automated 
pre-processing in a functionally autonomous environment 
to quantify hemiplegic gait disparity. Chattopadhyay and 
Nandy [19] used a sensor-based method utilizing a 
wearable IMU placed at subject’s shank for detecting 
abnormal (hemiplegic and equinus) gait patterns. The IMU 
sensor contains a 3-axis accelerometer and gyroscope, 
which provide acceleration and angular velocity of a human 
foot. The proposed system also uses a hidden-Markov 
model to represent bipedal human gait. Manca et al. [20] 
used hierarchical cluster analysis to classify the gait 
patterns of 49 hemiplegic patients having equinus foot 
deformity. The cluster analysis revealed 5 groups showing 
homogeneous dysfunction levels during gait. Pagorelc et al. 
[21] created a system for early automatic recognition of 
health issues related to gait. The proposed system contains 
a series of body-worn tags and wall-mounted sensors. It can 
classify the subject’s gait into 5 categories (normal, 
hemiplegic, Parkinson’s disease, pain in the back and pain 

in the leg) using machine learning methods. Nieto-Hidalgo 
et al. [22] used a computer vision algorithm to extract 
features from gait recordings taken from a smartphone 
camera. The extracted features are entered as an input 
vector to a classification algorithm which classifies them 
into 5 different gait types (normal, diplegic, hemiplegic, 
neuropathic and parkinsonian). Li et al. [23] proposed a 
method for identifying 2 neurogenerative diseases 
(hemiplegia and Parkinson’s disease) from a person’s gait. 
The method uses a Kinect motion sensor to capture the 
joints’ trajectories from a 3D human skeleton. Adhikary et 
al. [24] used wearable sensors comprised of a 3-axis 
accelerometer and a 3-axis gyroscope for capturing the 
motion signatures produced during walk. The captured 
signals include healthy individuals and individuals 
suffering from hemiplegia, osteoarthritis, rheumatoid 
arthritis and knee ligament fracture. The proposed system 
utilizes various machine learning algorithms to classify 
each case. Luo et al. [25] used the Kinect motion sensing 
input device to capture normal and hemiplegic gait data. 
Then, they utilized the random forest algorithm for the 
classification and analysis of hemiplegic gait. Although the 
above methods managed to get very good results, they are 
not focused on detecting the hemiplegia type (right or left).  

This paper is structured in 5 main sections 
(Introduction, The SCG-BP Algorithm, The System 
Architecture, Experimental Results, and Conclusion). The 
Introduction section includes the problem’s description and 
the motivation behind this problem, followed by a literature 
review. The SCG-BP Algorithm section contains a detailed 
description of the SCG-BP neural network training 
algorithm used for the classification task. The System 
Architecture section contains an extensive analysis of the 
proposed system. The Experimental Results section 
analyses the outcome of the proposed approach in the 
custom-created dataset. Finally, the last section contains a 
summary of the proposed method. 

II. THE SCG-BP ALGORITHM 
The SCG-BP algorithm was developed by Møller [26] 

in 1991. It is a conjugate gradient type of learning 
algorithm, which is suitable for large-scale problems 
according to the general opinion of the numerical analysis 
community [27-29]. Its advantages include simplicity and 
speed since it is fully automated without needing any 
critical parameter tuning from the user’s perspective. 
Moreover, it eliminates the time-consuming line search, 
which alternative methods use. The elimination of the time-
consuming line search is achieved by utilizing a 
Levenberg-Marquardt approach [28] which scales the step 
size. 

SCG-BP calculates a numerical approximation close to 
the 2nd order derivatives when calculating the error energy 
for the next training epoch. The calculation of the Hessian 
matrix is omitted because it is computationally intensive 
and slows down the training process. During the 𝑘𝑘𝑡𝑡ℎepoch, 
it calculates a new search direction (𝑑𝑑𝑘𝑘) and a new step 
size (𝑎𝑎𝑘𝑘). Then, it utilizes the formula depicted in (1) for 
finding new weights to the neural network [30]. 
 

𝐸𝐸(𝑊𝑊𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘) < 𝐸𝐸(𝑊𝑊𝑘𝑘) (1) 
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The Taylor expansion [31] depicted below gives the 
quadratic approximation to 𝐸𝐸(𝑊𝑊𝑘𝑘) in a neighbourhood of a 
point 𝑊𝑊𝑘𝑘. 
 

𝐸𝐸(𝑊𝑊𝑘𝑘 + 𝑧𝑧) ≈ 𝐸𝐸(𝑊𝑊𝑘𝑘) + 𝐸𝐸′(𝑊𝑊𝑘𝑘)𝑇𝑇𝑧𝑧 +
1
2
𝑧𝑧𝑇𝑇𝐸𝐸′′(𝑊𝑊𝑘𝑘)𝑇𝑇 (2) 

 
In the above formula, the hessian 𝐸𝐸′′(𝑊𝑊𝑘𝑘) is not computed, 
and the 2nd order derivative 𝑂𝑂𝑘𝑘 is estimated as seen below. 
 

𝑂𝑂𝑘𝑘 = 𝐸𝐸′′(𝑊𝑊𝑘𝑘)𝑑𝑑𝑘𝑘 ≈
𝐸𝐸′′(𝑊𝑊𝑘𝑘 + 𝜎𝜎𝑘𝑘𝑑𝑑𝑘𝑘) − 𝐸𝐸′(𝑊𝑊𝑘𝑘)

𝜎𝜎𝑘𝑘
  

                                                       𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝜎𝜎𝑘𝑘 ≤ 1 
(3) 

 
In the above 2nd order derivative, 𝑊𝑊𝑘𝑘 describes the weight 
vector for the 𝑘𝑘𝑡𝑡ℎ epoch and 𝐸𝐸′(𝑊𝑊𝑘𝑘) is the error energy’s 
gradient. 𝐸𝐸(𝑊𝑊𝑘𝑘) is the total error energy and 𝜎𝜎𝑘𝑘 denotes the 
incremental change in the weight vector regarding the 2nd 
order derivative approximation [30]. 

The SCG-BP algorithm combines the trust-region case 
of the Levenberg Marquardt approach with the conjugate 
gradient method for the calculation of the next step size. 
The indefiniteness of the 𝐸𝐸′′(𝑊𝑊𝑘𝑘)  is managed by the 
utilization of the control variable 𝑐𝑐𝑘𝑘 as seen below. 
 

𝑂𝑂𝑘𝑘 =
𝐸𝐸′(𝑊𝑊𝑘𝑘 + 𝜎𝜎𝑘𝑘𝑑𝑑𝑘𝑘) − 𝐸𝐸′(𝑊𝑊𝑘𝑘)

𝜎𝜎𝑘𝑘
+ 𝑐𝑐𝑘𝑘𝑑𝑑𝑘𝑘 (4) 

 
The indefiniteness of 𝐸𝐸′′(𝑊𝑊𝑘𝑘)  is checked by computing in 
parallel the term 𝛿𝛿𝑘𝑘 = 𝑑𝑑𝑘𝑘𝑇𝑇𝑂𝑂𝑘𝑘 . 

At each epoch the 𝑐𝑐𝑘𝑘 is adjusted according to the sign 
value of 𝛿𝛿𝑘𝑘. If 𝛿𝛿𝑘𝑘 ≤ 0 then a slight increase to 𝑐𝑐𝑘𝑘 is applied 
and 𝑂𝑂𝑘𝑘  is recalculated. Finally, in every iteration, the 
weight vector is adjusted according to formula (5). 
 

𝑊𝑊𝑘𝑘+1 = 𝑊𝑊𝑘𝑘 + 𝑎𝑎𝑘𝑘𝑑𝑑𝑘𝑘 (5) 
 
The weight update procedure continues until the stopping 
criteria have been met [30]. 

III. THE SYSTEM ARCHITECTURE 
The proposed system architecture utilizes the 

RehaGait mobile gait analysis system by HASOMED [4, 
5]. RehaGait contains 7 sensors placed at 4 different body 
parts of the patient (left and right foot, the left and right 
shank, the left and right thigh, and the subject’s hip). Each 
sensor contains an accelerometer, a magnetometer, and a 
gyroscope. The present research uses the signals received 
from the accelerometer, which were split into 2-second 
windows and underwent a pre-processing and feature 
extraction stage. The signals were transmitted wirelessly to 
a laptop computer that had the MATLAB 2018a 
environment. MATLAB was responsible for the pre-
processing, feature extraction, and classification tasks. The 
pre-processing stage involved smoothing the signal using a 
low pass filter.  

In the feature extraction stage, 4 time-domain features 
and 2 frequency-domain features were extracted. The first 

time-domain feature was the mean (𝜇𝜇) which can be seen 
in equation (6). 
 

𝜇𝜇 =
1
𝑁𝑁
�𝐴𝐴𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (6) 

 
In this equation, 𝑁𝑁 is the number of scalar observations, 
and 𝐴𝐴  denotes a random variable vector. The second 
feature was the standard deviation which can be seen 
below. 
 

𝑆𝑆 = �
1

𝑁𝑁 − 1
�(𝐴𝐴𝑖𝑖 − 𝜇𝜇)2
𝑁𝑁

𝑖𝑖=1

   (7) 

 
In this equation, 𝑁𝑁 is the number of scalar observations, 𝐴𝐴𝑖𝑖 
denotes a random variable vector 𝐴𝐴 and 𝜇𝜇 is the mean of 𝐴𝐴. 
The third feature is the kurtosis of a distribution defined 
below.  
 

𝑘𝑘 =
𝐸𝐸(𝑥𝑥 − 𝜇𝜇)4

𝜎𝜎4
  (8) 

 
In this formula, 𝐸𝐸(𝑡𝑡) is the expected value of quantity 𝑡𝑡, 𝜇𝜇 
defines the mean of 𝑥𝑥 and 𝜎𝜎 defines the standard deviation 
of 𝑥𝑥. The fourth feature was the peak-magnitude-to-RMS 
ratio seen in formula (9). 
 

𝑅𝑅𝑅𝑅𝑆𝑆 =
‖𝐴𝐴‖∞ 

�1
𝑁𝑁∑ |𝐴𝐴𝑖𝑖|2𝑁𝑁

𝑖𝑖=1

  (9) 

 
The frequency-domain features were the acceleration 

energy and the acceleration signal energy. The first feature 
is defined in equation (10) where 𝐴𝐴𝑖𝑖 denotes the 𝑖𝑖𝑡𝑡ℎspectral 
line of the acceleration signal and 𝑁𝑁 are the total lines. 
 

𝐸𝐸𝐸𝐸𝐸𝐸 =
 ∑ 𝐴𝐴𝑖𝑖2𝑁𝑁

𝑖𝑖=1

𝑁𝑁
  (10) 

 
The second feature is the acceleration signal entropy seen 
in formula (11) where 𝑝𝑝𝑖𝑖  defines the probability of the 𝐴𝐴𝑖𝑖 
value occurring in the amplitude spectrum. 
 

𝐸𝐸𝐸𝐸𝑡𝑡 = −�𝑝𝑝𝑖𝑖 log2 𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1

  (11) 

 
After completing the feature extraction process, these 
features were sent as an input vector to an SCG-BP trained 
neural network. The neural network classified the input 
data into 3 categories (healthy, left hemiplegia, and right 
hemiplegia) using a custom-created dataset. The dataset 
was divided into training and testing using the k-fold cross-
validation method. The architecture of the proposed system 
is visualized in Fig. 1.  
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Fig. 1. The system architecture. Initially, the signals received from the accelerometers were sent to a laptop having the 
MATLAB 2018a environment for undergoing a pre-processing and feature extraction process. After completing the feature 
extraction, the data are sent to a neural network trained with the SCG-BP algorithm, which classifies them into 3 categories 
(healthy, left hemiplegia, and right hemiplegia). 

 

IV. EXPERIMENTAL RESULTS 
The proposed system was tested in a custom-created 

dataset containing 10 healthy subjects and 20 patients 
suffering from hemiplegia. Regarding the patients, 8 had 
left hemiplegia, and 22 had right hemiplegia. The signals 
were received to a laptop having the MATLAB 2018a 
environment using a wireless connection. The experimental 
part utilized the signals received from the accelerometer, 
which were split into 2-second windows and underwent a 
pre-processing and feature extraction stage. The pre-
processing step involved using a low-pass filter, while the 
feature extraction stage used the features described in 
section 3. The selected features formed the feature vector, 
which was introduced to a neural network trained with the 
SCG-BP algorithm. The neural network contained one 
hidden layer having 100 neurons with the sigmoid 
�𝑦𝑦 = 1

1+𝑒𝑒−𝑥𝑥
� activation function and 3 output neurons with 

the identity (𝑦𝑦 = 𝑥𝑥)  function. Each input dimension 
introduced to the network contained 6 features ×  7 
accelerometers ×  30 subjects =  126 entries, while the 
output layer had 3 classes. The neural network structure can 
be seen in Fig. 2.  

The experiments were repeated 10 times with the 
purpose of avoiding any bias due to random initialization 
of the hidden weights and biases. The dataset was divided 
into training and test sets. The former received 80% of the 
data, while the latter received 20% of the data. During 
training, the 10-fold cross-validation method was used to 
avoid overfitting. The experimental results showed an 
average of 87.71% accuracy on the test data over all 
experiment runs.  

 

 
Fig. 2. The neural network structure. The network contains 
one hidden layer having 100 neurons with the sigmoid 
activation function and 3 output neurons with the identity 
function. 

CONCLUSION 
This paper presented a method for automatic 

identification of the hemiplegia type (right or left). The 
proposed approach receives data from the accelerometer 
sensor of the RehaGait mobile gait analysis system. The 
proposed method showed a very good classification 
accuracy (87.71%) on the test data in a custom-created 
dataset containing 10 healthy subjects and 20 patients 
suffering from the right or left hemiplegia type. 
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