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Abstract—Human activity recognition (HAR) and gait analysis
are two study topics that are used to identify numerous daily
activities, such as walking, running, and stair climbing, and how
they are performed. The valid identification of any gait deviation,
as an abnormality in the gait cycle, can help in the real-time
monitoring of patients with neuromuscular and musculoskeletal
causes, and eventually in the restoration of their normal gait
function. The current study combines multiple data preprocessing
approaches with supervised machine learning algorithms to
provide a framework for recognizing diverse gait activities using
data samples from the publicly accessible “HuGaDB” human
gait database. The automated analysis method takes into account
3-dimensional (3D) signals derived from two types of inertial sen-
sors: accelerometers and gyroscopes, as well as electromyography
(EMG) devices placed on the right and left leg of 18 healthy
human participants. The proposed tool achieves a classification
accuracy of 80% and F1-score of 79% with Random Forest
emerging as the optimal gait patterns identification method.

Keywords—Human Activity Recognition, Gait Pattern, Gait
Analysis, Accelerometer, Gyroscope, Electromyography, Data Min-
ing, Machine Learning

I. INTRODUCTION

Interpreting human activity is concerned with correctly
recognizing common human actions in real-life conditions.
To identify each activity, data is acquired through portable
sensors, such as multimodal sensing devices, which are placed
in various parts of the body, or stationary monitoring devices,
including 3D motion tracking camera systems. Such an iden-
tification problem is a challenge, as it can be integrated into
telemedicine and mobility rehabilitation systems for patients
with neuromuscular and musculoskeletal conditions leading to
motor impairment [1]. Exporting motion data from wearable
sensors, on the other hand, brings various obstacles, including
inter-class similarity, intra-class variability, and imbalanced
class data [2]. Because of the aforementioned factors, as well
as the fact that every kinetic function is unique, a significant
amount of research has been conducted using a variety of
approaches based on data mining and machine learning tech-
niques for extracting high-level information from raw data and
detecting any deviation from normal gait function [3].

We acknowledge support of this work by the project “MEGATRON”
(MIS 5047227) which is implemented under the Action “Reinforcement
of the Research and Innovation Infrastructure”, funded by the Operational
Programme ”Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-
2020) and co-financed by Greece and the European Union (European Regional
Development Fund).

Methods targeting diverse characteristics of healthy and pa-
tient motor status derived from wearable sensors are available
in the literature, which focus on activities involving the lower
limbs of the body (hip, knee, leg, foot), such as walking,
running, balance, and so on. Badawi et al. [4] examined
whether integrating accelerometer and gyroscope signals could
improve the recognition of human activities in the “HuGaDB”
dataset using various machine learning techniques and whether
some sensor positions were better than others at identifying
each activity. Kececi et al. [5] utilised also the open source
“HuGaDB” database’s gait patterns for user authentication
purposes by employing multiple machine learning classifiers.
With regard to non-publicly available and custom datasets,
Ardestani et al. [6] aimed to train a feed-forward artificial neu-
ral network, utilizing gait data gathered from pre-rehabilitation
ground reaction forces and electromyograms, to predict the
subsequent medial knee contact force based on rehabilitation
patterns. Xia et al. [7] developed a convolutional neural net-
work architecture to distinguish freezing of gait (FOG) from
normal walking patterns from one-dimensional acceleration
input signals, with the purpose of monitoring and aiding FOG
patients during their rehabilitation treatment. The Toledo-Pérez
et al. methodology [8] compared the accuracy of the intention
of movement classification based on the increasing number (1
to 4) of surface electromyography (sEMG) signal channels in
the right lower limb of healthy subjects. Di Nardo et al. [9]
followed a similar approach to assess the impact of a varying
number of sEMG sensors (4 to 1) on the binary classification
of gait phases and prediction of heel-strike from swing to
stance and toe-off from stance to swing time. Morbidoni et
al. [10] employed an artificial neural network to predict the
foot-floor-contact signal and classify gait events based on
sEMG activity data (deceleration, reversing, acceleration, etc.).
The Nacpil et al. study [11] evaluated the ability of transfer
functions to predict the nonlinear behavior of sEMG signals
and muscle acceleration during walking, with the ultimate
goal of detecting gait pathologies and assisting in the design
of lower prosthetic limbs that mimic the movement of the
healthy counterpart. Wei et al. [12] studied the effectiveness
of various feature extraction and preprocessing strategies from
sEMG and electroencephalogram (EEG) channels, as well as
the performance of different machine learning algorithms in
the classification of gait phases. Zeng et al. [13] explored the
effectiveness of several classification models to identify any
anterior cruciate ligament (ACL) injury and to distinguish be-
tween ACL-deficient and ACL-intact knees based on features
obtained from knee, hip and ankle gait kinematic and kinetic
data. Christou et al. [14] created a method for differentiating
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healthy from patient subjects with hemiplegia, but also the type
of hemiplegia, utilizing three-dimensional data obtained from
magnetometer and gyroscope devices, as well as accelerometer
sensors from the ”RehaGait” mobile analysis system. In the
Li et al. paper [15] a prediction model was presented for
estimating human motor intention in the lower limbs from
sEMG signals and motion data of the hip and knee during
walking, using a hybrid model consisting of a fuzzy wavelet
neural network (FWNN) and a zeroing neural network (ZNN)
for eliminating the FWNN’s prediction errors.

In this study, a methodological framework is presented for
identifying human activities in a publicly available dataset.
Data from two types of inertial sensors are used: 1) accelerom-
eters and 2) gyroscopes, as well as data from electromyography
(EMG) sensors to identify patterns in the movement of each
healthy subject in the database. More technically, the sensor
data is used to predict each kinetic activity by applying two
dimensionality reduction and five classification algorithms.
Subsequently, combinations of these feature extraction and
classification techniques are applied to achieve the most opti-
mal kinetic state identification performance. The performance
of the applied combinations is evaluated and compared using
the 10-fold cross-validation method, with classification accu-
racy and F1-score as the main criteria.

II. METHODOLOGY

The following paragraphs give an overview of the dataset
used in the proposed methodological approach, followed by
a detailed examination of the data preprocessing and machine
learning techniques used to build the automated human motion
activities recognition tool. In the future, the proposed method
could be integrated into a complete prognostic tool for differ-
entiating healthy from abnormal gait functions and monitoring
the disease-affected activity in clinical trials and rehabilitation
centers.

A. Dataset Description

The dataset used in this work is entitled “HuGaDB” [16]
and is obtained from the Kaggle web-based data science
community1. It contains data from the motor activity of 18
healthy individuals which were collected using three pairs of
inertial sensors, corresponding to a) 3-axis accelerometers and
b) 3-axis gyroscopes, as well as one pair of EMG sensors put
on the right and left legs. More specifically, the inertial sensor
signals were retrieved from a pair of sensors placed on the
rectus femoris muscle 5 cm above the knee, a pair of sensors
in the center of the shinbone where the calf ends, and a pair
on the metatarsal bones of the feet. The EMG signals were
instead obtained from sensors in the vastus lateralis.

In total, 38 signals were acquired, 36 from inertial sensors
and 2 from EMG sensors, which were assembled into 16
dataframes per participant (n=18) in the form of feature sam-
ples [16]. In these produced dataframes, each exported sample
was annotated with a label y ∈ {walking, running, going
up, going down, sitting, sitting down, standing up, standing,
bicycling, up by elevator, down by elevator, sitting in car}
(Table I) that denotes the activity performed at that moment.

1HuGaDB (Human Gait Database)

Table I: Recorded Gait Activities in HuGaDB

ID Activity Time (min) Percent Samples
1 Walking 192 32.15 679073
2 Running 20 3.39 71653
3 Going up 37 6.23 131604
4 Going down 33 5.52 116637
5 Sitting 68 11.45 241849
6 Sitting down 6 1.14 24112
7 Standing up 6 1.06 22373
8 Standing 93 15.56 328655
9 Bicycling 44 7.41 156560
10 Up by elevator 25 4.22 89144
11 Down by elevator 19 3.30 69729
12 Sitting in car 51 8.55 180573

Total 598 100 2111962

B. Machine Learning Workflow

The identification of 12 different gait activities using the
HuGaDB data structure (Table I) results in a multi-class clas-
sification problem. For this problem to be solved, the proposed
methodology employs a machine learning pipeline, as shown
in Figure 1. The following texts provide a brief overview of
each step performed to identify each human activity, while the
classification results are presented in Section III.
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Figure 1: Flowchart of the proposed human activity recognition method

1) Missing values: All human activity data are first loaded
into the classification system based on the CSV extension files
shared by the HuGaDB authors, and then a search for missing
values in each of the participants’ dataframes is conducted.
During the search, no missing values were discovered.

2) Scaling: To address the issue of varied scaling in the
employed data, their standardization with Z-score normaliza-
tion is preferred, since the dataframes comprise feature values
from three-dimensional sensors and electromyography signals
expressed in different units of measurement: a) accelerometer:
m/s2, b) gyroscope: o/s and c) EMG: Volts. Here, the values
are centered around the mean, which is assumed to have a
value of 0, whereas the resulting distribution has a unit of
standard deviation. As an outcome, each feature in isolation
is scaled to the closed range [-1,1]. As an alternative, ”Min-
Max” normalization [0,1] is applied. This is a crucial step
before training and testing machine learning algorithms since
feature values with a larger range tend to outweigh those with a
smaller range, and may cause a decrease in activity recognition
performance. Additionally, by scaling the feature set values, we
assure that the information will remain constant by limiting the
number of outliers to the minimum possible.

3) Dimensionality reduction: To minimize the dimensional-
ity of the HuGaDB data and maintain the features most relevant
to each motor activity, the principal components analysis
(PCA) is used. PCA is a linear projection that minimizes the
average projection cost, defined as the mean squared distance
between the data points and their projection. Using the PCA
technique, the data are projected onto a space of M < D
dimensions, which maximizes the variance of the projected
data [17].
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4) Feature ranking: Another method utilized in feature re-
duction approaches and based on the probabilistic dependence
of each independent feature x on the dependent target variable
y. The observed count is close to the expected count when
two features are independent, hence the Chi-square value will
be lower. Therefore, a high Chi-square score suggests that the
independence hypothesis is false. Simply put, features that are
more reliant on the response and have larger Chi-square values
might be chosen for model training. To determine the number
of most informative features, a wrapping feature selection
method2 is applied (Estimator: Random Forest with balanced
distribution [18]). Afterward, followed by a Grid-search pro-
cedure that tunes the parameter ’k’, which corresponds to the
number of features, the value of k=36 is obtained.

5) Classification: Given the No Free Lunch theorem [19], it
is reasonable to assume that no individual supervised method
can provide the optimum generalization capability for each
classification problem’s input data. In response to this problem,
a pool of well-known supervised models is formed within the
scope of the current methodology, with the previously pre-
processed gait data as input. Among the models are Decision
Trees, k-Nearest Neighbors (k-NN), Support Vector Machines
(SVM), as well as the Random Forests and AdaBoost ensemble
algorithms. The following is a quick summary of the preferred
classifiers:

• Decision Tree: It is a hierarchical supervised learning
model, in which an input sample is identified through
a recurring branching process [20], [21]. Finding the
optimal number of layers in the tree to maximize
the prediction accuracy while minimizing the risk of
overfitting is often a challenge. A key advantage of
this algorithm is its interpretation, as it relies on a
logical set of decisions based on ”if-then” conditions.

• Random Forest: It consists of a large number of
individual decision trees [22] that are typically trained
using the bagging method [23]. Specifically, decision
trees with low correlations among each other operate
as an ensemble guided by the “wisdom of crowds”
concept, contributing to the formation of a better
learning agent with lower error rates.

• k-NN: A lazy-learner algorithm which assigns an
unknown sample to the class that the majority of its k-
nearest neighbors belong. The term of “lazy-learner”
refers to the fact that it doesn’t implement a function
that subsequently performs the discrimination, instead
the feature samples are called into the computer
system memory during runtime, defining k-NN as a
memory-based classifier.

• SVM: At its core is a two-class classifier. However,
when applied to a multi-class (K > 2) problem,
then a combination of multiple two-class SVMs is
created. The method uses the concept of margin for the
classification of input samples, which is defined as the
shortest distance between the decision boundary and
the data points both the positive and negative sides of
a hyperplane [17], [24].

2FFS (Forward Feature Selection)

• AdaBoost: It is a meta-algorithm that refers to an en-
semble of base classifiers called “weak learners”, that
are trained sequentially [17], [25]. Each base classifier
is trained using a weighted form of the dataset, with
the weighting coefficient associated with each data
sample being determined by the performance of the
previous classifiers. In particular, data samples that are
incorrectly labeled by one of the base classifiers are
given greater weight when training the next classifier
in the sequence. After all of the classifiers are trained,
their predictions are combined through a weighted
majority voting system.

III. EVALUATION

The workflow described above is carried out in two phases.
The first phase is data preprocessing and dimensionality re-
duction, where the number of features is reduced to 36 (from
the original 38). Table II displays the p-values for the most
significant feature values that are retrieved using the Chi-
square method, whereas PCA reshaped the feature set to
36 principal components. The table suggests that gyroscopes
and EMG devices are the most essential wearable sensors
and features that are extracted from them have the highest
probability of being selected for model training.

Table II: Chi-square and PCA Feature Importance Values

Feature Chi-square PCA
EMG right 0.9983 1.0000
EMG left 0.9442 1.0000
gyroscope right thigh x 0.8751 0.9977
gyroscope left shin x 0.3153 0.9953
gyroscope left thigh x 0.1031 0.9895
gyroscope left shin z 0.0949 0.9834
gyroscope right foot z 0.0061 0.9770
gyroscope left foot z 0.0049 0.9702
gyroscope left thigh z 0.0012 0.9624
gyroscope right shin x 0.0003 0.9543
gyroscope right thigh z 0.0001 0.9460
gyroscope right shin z 0.0000 0.9369
gyroscope left foot y 0.0000 0.9272
gyroscope right foot y 0.0000 0.9173
accelerometer left shin x 0.0000 0.9067
gyroscope left shin y 0.0000 0.8957
gyroscope right foot x 0.0000 0.8841
accelerometer left thigh y 0.0000 0.8719
accelerometer left shin y 0.0000 0.8589
gyroscope right shin y 0.0000 0.8454
gyroscope left foot x 0.0000 0.8299
accelerometer right shin y 0.0000 0.8137
gyroscope right thigh y 0.0000 0.7969
gyroscope left thigh y 0.0000 0.7789
accelerometer right thigh y 0.0000 0.7606
accelerometer right foot z 0.0000 0.7407
accelerometer left foot y 0.0000 0.7203
accelerometer left foot z 0.0000 0.6964
accelerometer right foot y 0.0000 0.6716
accelerometer right shin x 0.0000 0.6439
accelerometer left thigh z 0.0000 0.6149
accelerometer left thigh x 0.0000 0.5497
accelerometer left shin z 0.0000 0.5093
accelerometer right foot x 0.0000 0.4654
accelerometer right thigh z 0.0000 0.4156
accelerometer right thigh x 0.0000 0.3493
accelerometer right shin z 0.0000 0.2595
accelerometer left foot x 0.0000 0.1511

The second phase involves measuring the motion activity
prediction performance of the classification models. As men-
tioned in Section II-B, five classification methods are applied.
The confusion matrix, as well as accuracy, recall, precision,
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and F1-score, are common metrics used to evaluate the effec-
tiveness of supervised algorithms. In classification problems,
an algorithm might excel in one metric but might underperform
in another. The user should thus be well-informed about
the trade-offs involved. The confusion matrix is a numerical
tableau depiction of how each model fits the data. It consists
of n rows and n columns, where n is the number of target
classes (in our case, n=10). Within the confusion matrix, let TP
(True Positive) be the number of positive samples that are also
classified as positive and TN (True Negative) be the number
of negative samples that are also classified as negative. Let FP
(False Positive ) be the number of negative samples mistakenly
classified as positive, and FN (False Negative) be the number
of positive samples mistakenly classified as negative. Through
these measures, the classification accuracy is derived as the
percentage of correctly classified samples, given in Equation 1,
precision as the false negative rate (FNR), given in Equation 2,
and recall as the true positive rate (TPR), given in Equation 3.
Furthermore, F1-score is calculated providing a value that
shows how favorite is the balance between precision and recall,
and is given by Equation 4.

As previously indicated, the target classes have been re-
duced from 12 to 10. This is because the activities ”Down
by elevator” and ”Up by elevator” have been merged since
the samples from the two categories have a high correlation
rate. Additionally, the activity ”Sitting down” is merged with
the category ”Sitting” due to the former’s lack of information,
which leads to high confusion. This is inferred according to
information obtained from the confusion matrix, indicating a
reduced variability between them. In the Experiments section,
a comparison is made between each supervised model’s pre-
dictions and the ground truth labels.

IV. EXPERIMENTS

Our experiments are conducted using the Python program-
ming language, the Scikit-learn [26] package, and a Windows
10 workstation equipped with an AMD Ryzen 5700G(8C/16T)
processor and 32GB of RAM. A significant number of runs
are executed since we try all combinations of data prepro-
cessing steps and classification algorithms that are described
in Section II-B. In particular, for 10 folds, we combine the
data scaling approach with two feature reduction and five
classifier alternatives, totaling 400 individual runs that kept
our workstation busy for about three hours. The metrics that
we have obtained for visualization are the accuracy and F1-
score, for each classifier, which is presented in the boxplots of
Figure 2.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precisioni =
TPi

TPi + FPi
(2)

Recalli =
TPi

TPi + FNi
(3)

F1 scorei =
2× Precisioni ×Recalli
Precisioni +Recalli

(4)

Figure 2: Comparison of classifiers in metric terms

To identify the best-performing classifiers, the Pareto-
optimal objects [27] of all runs are computed based on two
performance metrics (accuracy and F1-score). For this step, the
Pareto front (Pareto frontier) was computed using the Python
OApackage3 library, with the retrieved non-dominant solutions
presented in Table III. It is observed that Random Forest
emerges as the best classifier, occupying two of the four entries
in the table, with AdaBoost occupying the other two.

Table III: Pareto Optimal Solutions for Scoring Metrics

Scaling Feature Selection ML Algorthm Accuracy F1-score
Z-score Chi-square Random Forest 0.799341 0.668602

Min-Max PCA Random Forest 0.780483 0.676891
Z-score Chi-square AdaBoost 0.624712 0.789582
Z-score PCA AdaBoost 0.749181 0.785339

V. CONCLUSION

In this paper, we examine a particular case of the problem
of motion prediction using wearable sensors. HugaDB is used
as the dataset and a machine learning workflow is set up
utilizing various data preprocessing steps and five classification
approaches. Using 10-fold cross-validation, Random Forest
emerges as the most effective algorithm for our problem in
terms of attaining high accuracy (80%) results and occupies
two of four non-dominant Pareto objects. In future work, we
plan to expand the workflow to more datasets using different
devices, such as force plates and 3D cameras, to acquire new
gait data and apply other state-of-the-art methods to the motion
prediction problem, such as shallow and deep neural networks,
but also voting classification systems.

3OApackage (Orthogonal Array package)
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