
Higher-Order Extreme Learning Machine

Vasileios Christou∗

Department of Informatics and Telecommunications, University of Ioannina, Arta, Greece

Abstract

The training process of feed-forward neural networks is a slow and computation-

ally intensive procedure mainly due to the iterative nature of most algorithms.

A solution to this problem was the creation of the extreme learning machine

(ELM) algorithm for single-layer neural networks (SLNNs). This method uses

a very fast approach where the hidden-layer weights and thresholds are ran-

domized, and the output layer’s weights are analytically calculated using the

Moore-Penrose pseudo-inverse. Although it provides good generalization per-

formance, it is restricted in traditional neuron types where each neuron’s input

is multiplied by its corresponding weight. This paper proposes the higher-order

(sigma-pi) ELM algorithm, which generalizes original ELM in six higher-order

SLNN variants. Higher-order units utilize more weights than traditional neurons

to solve their restriction in linear separable problems. The experimental results

showed that higher-order SLNN variants had better generalization performance

than SLNNs trained using the classic ELM algorithm in 15 classification and

10 regression datasets taken from the University of California, Irvine (UCI)

machine learning repository and www.kaggle.com website.

Keywords: artificial neural network, extreme learning machine, feed forward

neural network, higher-order neuron, multi-cube neuron, sigma-pi neuron

∗Corresponding Author.
Email address: bchristou1@gmail.com (Vasileios Christou)

Preprint submitted to Cognitive Systems Research September 6, 2022

1. Introduction

Artificial single-layer neural networks (SLNNs) are popular solutions in var-

ious classification and regression tasks. Gradient-based training methods like

back-propagation are computationally intensive. The reason behind this is their

iterative nature which requires a large number of iterations (epochs) in order to5

adapt the network’s weights and thresholds. Extreme learning machine (ELM)

training approach proposed by Huang et al. (2004, 2006b) circumvents this

problem. It can train SLNNs faster than alternative methods by randomizing

the hidden-layer weights and thresholds. Then, it utilizes the Moore-Penrose

pseudo-inverse technique, which is employed to analytically calculate the output10

layer’s weights. The advantages of this method include:

� The lack of user-defined parameters that can affect the training process

(e.g., a learning rate).

� Its ability to use non-differentiable transfer functions in the network’s

neurons.15

� It doesn’t require a validation set like gradient-based methods.

The classic ELM method was designed to work with the traditional weighted

sum of inputs neurons (here we term them low-order neurons) where the inputs

are multiplied with an associated weight (Huang et al., 2004, 2006b). One issue

that has been highlighted in the past is that a single weighted sum of inputs neu-20

ron cannot be used to solve non-linear separable problems like the approximation

of the XOR function (Gurney, 2018). A possible solution to this problem was to

replace low-order units with more complex neurons termed sigma-pi (which may

be viewed as higher-order functionality) units (Gurney, 1989). These circum-

vent this issue by mapping a neuron input to multiple weights. The higher-order25

units interpret their inputs as a probability of addressing weights; where µ spec-

ifies the addresses of weights (wµ) and the probability of addressing each weight

is Pµ. Pµ can be viewed as coefficients that determine the weight’s participa-

2

tion percentage1 in the accumulated activation. These face the issue that their

weights increase exponentially when the number of inputs increases, making30

them unsuitable for datasets with many attributes. Gurney (1989) provided a

solution to this problem by inventing the multi-cube unit, which successfully

circumvents this problem by allowing the user to control the number of weights

at each assigned input (Gurney, 1989).

This paper presents an adaptation to the ELM model, where SLNN’s nodes35

are replaced by higher-order or multi-cube units in their hidden and output

layers. Specifically, it covers the following six network types shown in Ta-

bles 1 and 2.

Table 1: Higher-Order Unit Networks

Neuron Types Higher-Order

Hidden Layer Higher-Order Low-Order Higher-Order

Output Layer Low-Order Higher-Order Higher-Order

Table 2: Multi-Cube Unit Networks

Neuron Types Multi-Cube

Output Layer Multi-Cube Low-Order Multi-Cube

Output Layer Low-Order Multi-Cube Multi-Cube

The motivation for adapting the ELM algorithm to higher-order neuron

SLNNs was to create advanced networks with better generalization ability than40

low-order ELM-trained models. Earlier works from Christou et al. (2018, 2019,

2020, 2022) support this claim since they presented positive results by utilizing

SLNNs with higher-order neurons in their hidden layers. This article expands

those works by covering the network models with higher-order neuron types in

1Participation percentage implies that a percentage (or contribution) of the weight is uti-

lized to calculate the activation; this contribution is (in the original sigma-pi model) specified

as the probability of addressing a weight (Pµ).

3

their output node(s).45

The paper is structured in nine main sections starting with the “Introduc-

tion” containing a description of ELM, a description of the higher-order units

proposed by Gurney (1989) and the motivation behind the utilization of those

units in the creation of ELM-trained SLNNs. The following section describes

existing works, while the third section thoroughly describes the low-order and50

higher-order nodes structure. In contrast, the fourth section describes ELM,

while the fifth section presents the pseudo-codes and descriptions for the six

higher-order networks proposed in the current article. The sixth section (Exper-

imental work and simulations) shows the results from comparing the above six

network types with classic ELM in 15 classification and 10 regression datasets.55

The following two sections are the “Discussion” and “Conclusion” of the pro-

posed work.

2. Literature review

Since the original ELM invention, many variations of the algorithm have

been proposed. Some of these variants aim to increase the robustness of ELM60

(Wang et al., 2021). The feed-forward network is constructed incrementally by

adding hidden units in the incremental ELM (I-ELM) by Huang et al. (2006a).

The paper also provides theoretical proof of ELM’s universal approximation ca-

pability. It utilizes an incremental constructive method to show that SLNNs

can work as universal approximators by simply randomizing the hidden layer’s65

weights and thresholds and adjusting the output layer’s neuron(s) weights. In

these neural network types, the transfer functions for additive nodes can be

any bounded non-constant piece-wise continuous function g : R → R. On the

other hand, the transfer function for radial basis function (RBF) neurons can

be any integrable piece-wise continuous function g : R → R and
∫
R
g(x)dx ̸= 0.70

Huang & Chen (2007) improved I-ELM by using a convex optimization method

to recalculate the output weights of the exiting neurons every time a new hid-

den unit is added to the SLNN. Xu et al. (2016) proposed incremental recursive

4

ELM (IR-ELM), which updates output weight recursively every time a new hid-

den neuron is added to the network. They also created an improved version of75

IR-ELM named enhanced incremental recursive ELM (EIR-ELM), which con-

tains a set of hidden units that will be added to the SLNN. Cao et al. (2012b)

improved ELM for classification problems by training several networks with

the same structure. Then, they utilized a voting mechanism on the results from

these SLNNs to find the final classification outcome. Huang et al. (2011) created80

kernel ELM (KELM), which enhances the robustness of ELM by turning low-

dimensional linearly non-separable data into linearly separable data. Deng et al.

(2013, 2016) proposed reduced kernel ELM (reduced-KELM), which greatly de-

creases the training time of kernel ELM (KELM) by selecting a random subset

of the given dataset. This approach was also successfully applied in cross-85

person activity recognition task (Deng et al., 2014). Luo et al. (2021) created

multinomial Bayesian ELM (MBELM) for multi-class classification problems,

which tries to solve some issues of sparse Bayesian ELM (SBELM) (Luo et al.,

2013; Wong et al., 2015) in multi-class datasets. SBELM has shown better

performance than ELM in generalization, sparsity, and runtime. The MBELM90

method has two variants that employ different sparse mechanisms. The first

variant utilizes automatic relevance determination and is focused on problems

where the model size or the execution time is the main priority with a small sac-

rifice on accuracy and training time. The second variant utilizes an L1 penalty

and is focused on problems where model size and accuracy have the same prior-95

ity. Zhang & Luo (2015) created an outlier robust ELM variant for regression

problems which utilizes the l1-norm loss function to enhance ELM’s robustness.

Xing & Wang (2013) introduced a regularized correntropy criterion for training

an ELM-based SLNN. This criterion can circumvent the problem of having a

training dataset containing noise or outliers. Although the above methods man-100

age to make significant improvements to the ELM algorithm, they do not take

into consideration higher-order neurons.

A number of ELM methods are focused on parameter tuning. Chen et al.

(2021) created a multi-objective parameter optimization strategy for ELM which

5

can simultaneously optimize the model error and generalization performance.105

Cao et al. (2021) created an ELM variant based on particle swarm optimiza-

tion (PSO) and crow search algorithm (CSA). The proposed (PSO-CSA-ELM)

model utilizes CSA to optimize the hidden layer weights and thresholds of ELM

and PSO to enhance the global search capability of CSA. Rathod & Wankhade

(2022)combined cuckoo search (CS) and invasive weed optimization (IWO) for110

optimizing the hidden layer weights and thresholds. Perales-González et al.

(2021) proposed the negative correlation hidden layer ELM (NCHL-ELM) where

each hidden unit’s output is corrected with an extra parameter’s help. The

purpose of this correction is to make each hidden neuron correlate negatively

with the SLNN’s output. All hidden layer units are considered equally signif-115

icant, conforming with the negative correlation framework’s assumption that

all base learners have the same significance (Liu & Yao, 1997; Chen & Yao,

2009). The multi-objective optimization-based sparse ELM (MO-SELM) by

Wu et al. (2018) integrates parameter optimization and structure learning into

the learning process of ELM to resolve its over-fitting problem and increase120

its generalization performance. Cao et al. (2018) created affine transformation

ELM (AT-ELM), which utilizes AT transfer functions and enforces the hid-

den units’ outputs to have a uniform distribution inside the transfer function’s

range. The random initialization of hidden weights and thresholds moves most

hidden node inputs into the transfer function’s saturated or linear regions, caus-125

ing poor generalization performance. Lu et al. (2017) used the active operators

PSO (APSO) algorithm for optimizing the internal power parameters of KELM.

The proposed APSO-KELM algorithm managed to accomplish good stability

and classification performance. Zhu et al. (2005) created evolutionary ELM,

which used a modified differential evolution algorithm for optimizing the hid-130

den layer weights and thresholds. Cao et al. (2012a) utilized a self-adaptive

differential evolution algorithm to optimize the hidden layer parameters. The

proposed SaE-ELM algorithm overcame the limitations of previous approaches

like evolutionary ELM (E-ELM), which involved a manual selection of the con-

trol parameters and vector generation strategies. Sevinc (2019) combined a135

6

genetic algorithm (GA) with ELM for finding the feature subset that would

provide the highest classification accuracy. Zhang et al. (2013) tuned ELM’s

hidden layer parameters using the firefly algorithm while Zhang et al. (2016)

utilized a memetic algorithm for the same task. The above algorithms make

significant improvements to ELM algorithm but do not consider higher-order140

neurons.

Many ELM-based methods are created to solve specific problem types. Dou

et al. (2022) developed an ELM-based battery capacity estimation method to

avoid over-charging and over-discharging lithium-ion battery cells. The pro-

posed method utilizes the salp swarm algorithm (SSA) to optimize the hidden145

layer nodes’ parameters and chaotic mapping for making SSA’s initialized in-

dividuals uniformly distributed. Tang & Li (2021) created a particle swarm

optimized online regularized ELM (IPSO-IRELM) approach for online network

intrusion detection. In contrast to classic ELM, which uses a batch learning

approach, IPSO-IRELM has a sequential learning mechanism and utilizes an150

improved version of PSO for optimizing IRELM’s initial weights and deviations.

IRELM is an improved version of the RELM (Mart́ınez-Mart́ınez et al., 2011) al-

gorithm, which can work with sequential data. RELM can automatically select

the ELM architecture based on regularized regression methods. Sulaiman et al.

(2022) combined empirical mode decomposition with ELM for solving the resi-155

dential load forecasting problem. Tian et al. (2021) combined linear fitting with

ELM to detect leaks in low-pressure gas distribution pipeline systems based on

the negative pressure wave principle. Liu et al. (2021) hybridized ELM with the

improved cuckoo search algorithm ICS for finding the actual junction temper-

ature in insulated-gate bipolar transistors for switching and industrial control160

systems. The ICS algorithm’s purpose was to find the optimal hidden layer

parameters. Zhang et al. (2020) introduced improved incremental fuzzy-kernel-

regularized ELM (I2FELM), a RELM-based Twitter spam detection approach.

I2FELM utilizes fuzzy weights to address the unbalanced data problem. Also,

Cholesky factorization without square root and composite kernel function is165

applied to increase performance. Finally, the hidden layer neurons can be cal-

7

culated automatically using an incremental method. Lu et al. (2019) combined

a restricted-Boltzmann strategy with ELM for gas path fault diagnosis of the

turbofan engine. The proposed method creates a feature mapping and recur-

sively tunes the hidden layer neurons. Cai et al. (2020) used PSO with ELM170

to create a short-term traffic flow forecasting system. The purpose behind hy-

bridizing PSO with ELM was to increase the generalization performance of the

latter. Similarly, recent research from Cui et al. (2022) used the gravitational

search algorithm (GSA) for finding the optimal ELM parameters in the same

problem type.175

Alternative higher-order neuron types include the sigma-pi units by Feld-

man & Ballard (1982) which their output is calculated by summarizing the

contributions from a set of independent multiplicative clusters of input weights

(Rumelhart et al., 1986; Mel & Koch, 1989) and the pi-sigma units by Shin &

Ghosh (1991). The pi-sigma networks use product cells as the output neurons to180

integrate higher-order network capabilities indirectly. Moreover, they utilize a

reduced number of weights and processing units. The present article utilizes the

higher-order units by Gurney (1989) because the multi-cube units allow the user

to control the number of weights at each assigned input. This ability circum-

vents the problem of higher-order units where the number of weights increases185

exponentially to the neuron’s inputs.

3. Node structures

The current section presents the linear and hyper-cube unit concept used

in the higher-order/cubic neurons (cubes) by Gurney (1989). Initially, the con-

nection between neuron inputs and hyper-cubes is explained. Then, a node190

structure that utilizes multiple hyper-cubes and solves the problem of higher-

order units where the number of weights increases exponentially to the neuron’s

inputs is shown.

8

3.1. Linear units

In the linear unit, each member of the input vector x = [x1, x2, . . . , xn] ∈

R, n ∈ N is multiplied to a corresponding weight taken from the weight vector

wl =


wl

1

wl
2

...

wl
n

 ∈ R and an optional threshold θ is added. It is defined by the

activation shown in equation (1) where the l superscript denotes the linear

neuron type, n is the number of inputs, xi is the current input, wi defines the

current weight and θ is the optional threshold.

al =

n∑
i=1

xiw
l
i + θ (1)

The activation’s output in (1) is then introduced as input to the activation195

function g(al) which produces the output y. The complete linear unit structure

is visualized in Fig.1.

Figure 1: The linear neuron structure. This figure visualizes the linear neuron where each

input is multiplied by a corresponding weight and an optional threshold is added. This

procedure forms the neuron’s activation which is inserted as input to the activation function.

The latter is responsible for producing the neuron’s output.

9

3.2. Cubic units

The main difference between low-order and the higher-order neurons by Gur-

ney (1989) is that in the latter, the n-dimensional input vector corresponds to200

a n-order polynomial defined in wc
no = 2n, n ∈ N. This polynomial is regarded

as a n-dimensional hyper-cube where each cube’s site corresponds to a spe-

cific weight (the c superscript denotes the cubic neuron type). This concept is

visualized in the 3-dimensional cube in Fig 2.

Figure 2: A 3rd order polynomial depicted as a hyper-cube. This figure visualizes a 3rd order

polynomial as a hyper-cube where each neuron weight corresponds to a specific site.

The participation of each weight in the cubic activation function is done205

according to the probability function defined in (2). In this formula, the term

µ = µ1, µ2, . . . , µn is an unsigned integer converted to binary form. The binary

form conversion is done to modify the input sign value in each product term

(1 + µixi). The binary format symbols interpretation involves converting each

‘0’ as a ‘−’ sign and each ‘1’ as a ‘+’ sign (Gurney, 1989). It should also be210

noted that the dataset entries introduced as input to the cubic neuron must be

normalized. The common normalization method for these neuron types is to

divide each dataset feature value with its corresponding highest absolute feature

value.

10

Pµ =
1

2n

n∏
i=1

(1 + µixi) (2)

The cubic activation defined in formula (3) multiplies each weight with the

above probability function and calculates their normalized average. The term

1
|wmaxc|

is used to normalize the activation by dividing its value by the highest

absolute weight value, while wc
µ denotes the current weight value.

ac =
1

|wc
max|2n

2n−1∑
µ=0

wc
µ

n∏
i=1

(1 + µixi) (3)

The activation’s output in (3) is then introduced as input to the activation215

function g(ac) which produces the output y. The complete cubic unit structure

is visualized in Fig.3.

Figure 3: The cubic neuron structure. This figure visualizes the cubic neuron where an

input vector containing n inputs corresponds to 2n weights. Each weight is multiplied by a

corresponding probability, and all weights’ normalized average is calculated. This procedure

forms the neuron’s activation, which is inserted as input to the activation function. The latter

is responsible for producing the neuron’s output.

3.3. Multi-cube units

The multi-cube unit was created by Gurney (1989) to solve cubic neurons’

scaling problems. The main difference from the cubic unit is that instead of one220

large cube, it utilizes a series of lower-order sub-cubes, which greatly reduces

the number of needed weights. The n-dimensional input vector corresponds

to a q number of lower-dimension sub-cubes where each one of them can have

11

different dimension d = [d1, d2, . . . , dq]. The number of weights in the multi-

cube neuron is defined in the polynomial wmc
no = pno =

∑q
i=1 2

dj , (i, di, q) ∈ N225

(the mc superscript denotes the multi-cube neuron type).

The activation defining the general structure of this unit type can be seen in

equation (4). In this formula q is the number of sub-cubes and dj is the current

sub-cube unit dimension taken from the vector d = [d1, d2, . . . , dq].

amc =
1

|wmc
max|

q∑
j=1

1

2dj

2dj−1∑
µ=0

wmc
µ

dj∏
i=1

(1 + µixi) (4)

The activation’s output in (4) is then introduced as input to the activation

function g(amc) which produces the output y. The complete multi-cube unit

structure is visualized in Fig.4.

Figure 4: The multi-cube neuron structure. This figure visualizes the multi-cube neuron

where an input vector containing n inputs is divided into series of q lower dimension sub-

cubes. Each sub-cube can have different dimension d = [d1, d2, . . . , dq] contributing to a∑q
j=1 2

dj total number of weights. Each weight is multiplied by a corresponding probability

and the normalized average of all weights is calculated. This procedure forms the neuron’s

activation which is inserted as input to the activation function. The latter is responsible for

producing the neuron’s output.

12

4. The ELM architecture230

The main advantage of ELM is simplicity and speed since it treats SLNNs as

linear systems where the hidden layer weights and thresholds are randomized,

and the output layer weights are analytically calculated with the help of the

Moore-Penrose pseudo-inverse. Also, it lacks user-defined parameters like the

learning rate in back-propagation, which can affect the algorithm’s convergence235

(Huang et al., 2004, 2006b).

The mathematical model of an ELM-trained SLNN is defined in formula (5).

g



x1,1

...

x1,n


T 

wl
1,1

...

wl
n,1

+ θ1

 . . . g



x1,1

...

x1,n


T 

wl
1,h

...

wl
n,h

+ θh


... · · ·

...

g



xN,1

...

xN,n


T 

wl
1,1

...

wl
n,1

+ θ1

 . . . g



xN,1

...

xN,n


T 

wl
1,h

...

wl
n,h

+ θh




N×h

·


βl
1,1 . . . βl

1,m

... . . .
...

βl
h,1 . . . βl

h,m


h×m

=


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

(5)

In the above mathematical model:

� g is the activation function.

� x =


x1,1 . . . x1,n

... . . .
...

xN,1 . . . xN,n


N×n

∈ RN×n contains the input values.

� n are the neuron inputs.240

� wl =


wl

1,1 . . . wl
1,h

... . . .
...

wl
n,1 . . . wl

n,h


n×h

∈ Rn×h defines the input weights matrix.

13

� θ = [θ1 . . . θh] ∈ Rh is the threshold vector.

� h is the hidden layer neurons number.

� N defines the number of input samples.

� βl =


βl
1,1 . . . βl

1,m

... . . .
...

βl
h,1 . . . βl

h,m


h×m

∈ Rh×m is the output layer weights matrix.245

� m is the output layer neurons number.

� T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

denotes the target output matrix.

In an ELM-trained network, the output neurons have the identity activation

function (g(u) = u) and they lack a threshold.

The training process of ELM involves randomizing the hidden layer weights250

and thresholds, as seen in the first two lines of Algorithm 1. The following

line creates the hidden layer output matrix H, which contains the hidden layer

neuron outputs of every training pattern introduced to the model. Line 4 defines

the target output matrix containing the expected network output values. The

algorithm finishes by calculating the neuron output weights matrix βl where the255

Moore-Penrose pseudo-inverse of the hidden layer matrix H is multiplied by the

target output matrix T .

14

Algorithm 1 : ELM

1 : wl =


wl

1,1 . . . wl
1,h

... . . .
...

wl
n,1 . . . wl

n,h


n×h

The hidden layer neurons’ weights matrix.

2 : θ = [θ1, . . . , θh]

The hidden layer neurons’ thresholds vector.

3 : H =

g



x1,1

...

x1,n


T 

wl
1,1

...

wl
n,1

+ θ1

 . . . g



x1,1

...

x1,n


T 

wl
1,h

...

wl
n,h

+ θh


... · · ·

...

g



xN,1

...

xN,n


T 

wl
1,1

...

wl
n,1

+ θ1

 . . . g



xN,1

...

xN,n


T 

wl
1,h

...

wl
n,h

+ θh




N×h

The hidden layer matrix H.

4 : T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

The target output matrix.

5 : βl = H†T

Calculation of the output weights matrix.

5. The higher-order ELM architecture

The current article proposes six ELM model variations for SLNNs with

higher-order or multi-cube neurons in their hidden and output layers.260

5.1. The higher-order ELM networks

The following section defines the mathematical models and pseudo-codes

for three higher-order SLNN adaptations, which cover all possible combinations

15

between higher-order and low-order unit types.

5.1.1. The higher-order/low-order ELM network265

The higher-order/low-order SLNN contains higher-order neurons in the hid-

den layer and low-order neurons in the output layer. The mathematical model

defining this network type is shown in formula (6).
g(ac1,1) . . . g(ac1,h)

... · · ·
...

g(acN,1) . . . g(acN,h)


N×h

·


βl
1,1 . . . βl

1,m

... . . .
...

βl
h,1 . . . βl

h,m


h×m

=


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

(6)

In the above mathematical model:

� g is the activation function.

� ac =

ac1,1



x1,1

...

x1,n


T

,


wc

0,1

...

wc
2n−1,1


 . . . ac1,h



x1,1

...

x1,n


T

,


wc

0,h

...

wc
2n−1,h




... · · ·
...

acN,1



xN,1

...

xN,n


T

,


wc

0,1

...

wc
2n−1,1


 . . . acN,h



xN,1

...

xN,n


T

,


wc

0,h

...

wc
2n−1,h





N×h

∈

RN×h is the cubic activation matrix.270

� x =


x1,1 . . . x1,n

... . . .
...

xN,1 . . . xN,n


N×n

∈ RN×n contains the input values.

� n are the neuron inputs.

16

� wc =


wc

0,1 . . . wc
0,h

... . . .
...

wc
2n−1,1 . . . wc

2n−1,h


2n×h

∈ R2n×h is the input weights matrix.

� h is the hidden layer neurons number.

� N defines the number of input samples.275

� βl =


βl
1,1 . . . βl

1,m

... . . .
...

βl
h,1 . . . βl

h,m


h×m

∈ Rh×m is the output layer weights matrix.

� m is the output layer neurons number.

� T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

denotes the target output matrix.

The ELM training process of an SLNN containing higher-order hidden layer

and low-order output layer nodes begins by randomizing the hidden layer weights280

matrix having 2n × h weights as seen in line 1 of Algorithm 2. The following

line creates the hidden layer output matrix H, which contains the hidden layer

neuron outputs of every training pattern introduced to the model. Line 3 de-

fines the target output matrix containing the expected network output values.

The algorithm finishes by calculating the linear neuron output weights matrix285

βl where the Moore-Penrose pseudo-inverse of the hidden layer matrix H is

multiplied by the target output matrix T .

17

Algorithm 2 : Higher-Order/Low-Order ELM

1 : wc =


wc

0,1 . . . wc
0,h

... . . .
...

wc
2n−1,1 . . . wc

2n−1,h


2n×h

The hidden layer neurons’ weights matrix.

2 : H =


g(ac1,1) . . . g(ac1,h)

... · · ·
...

g(acN,1) . . . g(acN,h)


N×h

The hidden layer matrix H.

3 : T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

The target output matrix.

4 : βl = H†T

Calculation of the output weights matrix.

5.1.2. The low-order/higher-order ELM network

The low-order/higher-order SLNN contains low-order units in the hidden

layer and higher-order units in the output layer. The mathematical model defin-290

ing this network type is shown in formula (7).


P1,0

(
g(al

1,1), . . . , g(a
l
1,h)

)
. . . P1,2h−1

(
g(al

1,1), . . . , g(a
l
1,h)

)
... · · ·

...

PN,0

(
g(al

N,1), . . . , g(a
l
N,h)

)
. . . PN,2h−1

(
g(al

N,1), . . . , g(a
l
N,h)

)


N×2h

·


βc
0,1 . . . βc

0,m

... . . .
...

βc
2h−1,1 . . . βc

2h−1,m


2h×m

=


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

(7)

In the above mathematical model:

� P is the probability function.

� g is the activation function.

18

� al =295 

al1,1



x1,1

...

x1,n


T 

wl
1,1

...

wl
n,1

+ θ1

 . . . al1,h



x1,1

...

x1,n


T 

wl
1,h

...

wl
n,h

+ θh


... · · ·

...

alN,1



xN,1

...

xN,n


T 

wl
1,1

...

wl
n,1

+ θ1

 . . . alN,h



xN,1

...

xN,n


T 

wl
1,h

...

wl
n,h

+ θh




N×h

∈

RN×h is the linear activation matrix.

� x =


x1,1 . . . x1,n

... . . .
...

xN,1 . . . xN,n


N×n

∈ RN×n contains the input values.

� n are the neuron inputs.

� wl =


wl

1,1 . . . wl
1,h

... . . .
...

wl
n,1 . . . wl

n,h


n×h

∈ Rn×h defines the input weights matrix.300

� θ = [θ1 . . . θh] ∈ Rh is the threshold vector.

� h is the hidden layer neurons number.

� N defines the number of input samples.

� βc =


βc
0,1 . . . βc

0,m

... . . .
...

βc
2h−1,1 . . . βc

2h−1,m


2h×m

∈ R2h×m is the output layer weights

matrix.305

� m is the output layer neurons number.

� T =


t11 . . . t1m
... . . .

...

tN1 . . . tNm


N×m

∈ RN×m denotes the target output matrix.

19

The ELM training process of an SLNN containing low-order hidden layer

and higher-order output layer nodes begins by randomizing the hidden layer

weights and thresholds as seen in the first two lines of Algorithm 3.310

Algorithm 3 : Low-Order/Higher-Order ELM

1 : wl =


wl

1,1 . . . wl
1,h

... . . .
...

wl
n,1 . . . wl

n,h


n×h

The hidden layer neurons’ weights matrix.

2 : θ = [θ1, . . . , θh]

The hidden layer neurons’ thresholds vector.

3 : H =
P1,0

(
g(al1,1), . . . , g(a

l
1,h)
)

. . . P1,2h−1

(
g(al1,1), . . . , g(a

l
1,h)
)

... · · ·
...

PN,0

(
g(alN,1), . . . , g(a

l
N,h)

)
. . . PN,2h−1

(
g(alN,1), . . . , g(a

l
N,h)

)

N×2h

The hidden layer matrix H.

4 : T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

The target output matrix.

5 : βc = H†T

Calculation of the output weights matrix.

The next line creates the hidden layer output matrix H, which contains the

hidden layer neuron outputs of every training pattern introduced to the model.

Line 4 defines the target output matrix containing the expected network output

values. The algorithm finishes by calculating the cubic neuron output weights

matrix βc where the Moore-Penrose pseudo-inverse of the hidden layer matrix315

H is multiplied by the target output matrix T .

20

5.1.3. The higher-order/higher-order ELM network

The higher-order/higher-order SLNN contains higher-order neurons in both

hidden and output layers. The mathematical model defining this network type

is shown in formula (8).
P1,0

(
g(ac

1,1), . . . , g(a
c
1,h)

)
. . . P1,2h−1

(
g(ac

1,1), . . . , g(a
c
1,h)

)
... · · ·

...

PN,0

(
g(ac

N,1), . . . , g(a
c
N,h)

)
. . . PN,2h−1

(
g(ac

N,1), . . . , g(a
c
N,h)

)


N×2h

·


βc
0,1 . . . βc

0,m

... . . .
...

βc
2h−1,1 . . . βc

2h−1,m


2h×m

=


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

(8)

In the above mathematical model:

� P is the probability function.

� g is the activation function.320

� ac =

ac1,1



x1,1

...

x1,n


T

,


wc

0,1

...

wc
2n−1,1


 . . . ac1,h



x1,1

...

x1,n


T

,


wc

0,h

...

wc
2n−1,h




... · · ·
...

acN,1



xN,1

...

xN,n


T

,


wc

0,1

...

wc
2n−1,1


 . . . acN,h



xN,1

...

xN,n


T

,


wc

0,h

...

wc
2n−1,h





N×h

∈

RN×h is the cubic activation matrix.

� x =


x1,1 . . . x1,n

... . . .
...

xN,1 . . . xN,n


N×n

∈ RN×n contains the input values.

� n are the neuron inputs.325

21

� wc =


wc

0,1 . . . wc
0,h

... . . .
...

wc
2n−1,1 . . . wc

2n−1,h


2n×h

∈ R2n×h defines the input weights

matrix.

� θ = [θ1 . . . θh] ∈ Rh is the threshold vector.

� h is the hidden layer neurons number.

� N defines the number of input samples.330

� βc =


βc
0,1 . . . βc

0,m

... . . .
...

βc
2h−1,1 . . . βc

2h−1,m


2h×m

∈ R2h×m is the output layer weights

matrix.

� m is the output layer neurons number.

� T =


t11 . . . t1m
... . . .

...

tN1 . . . tNm


N×m

∈ RN×m denotes the target output matrix.

The ELM training process of an SLNN containing higher-order hidden and335

output layer nodes begins by randomizing the hidden layer weights matrix hav-

ing 2n × h weights, as seen in line 1 of Algorithm 4. The following line creates

the hidden layer output matrix H, which contains the hidden layer neuron out-

puts of every training pattern introduced to the model. Line 3 defines the target

output matrix containing the expected network output values. The algorithm340

finishes by calculating the cubic neuron output weights matrix βc where the

Moore-Penrose pseudo-inverse of the hidden layer matrix H is multiplied by the

target output matrix T .

22

Algorithm 4 : Higher-Order/Higher-Order ELM

1 : wc =


wc

0,1 . . . wc
0,h

... . . .
...

wc
2n−1,1 . . . wc

2n−1,h


2n×h

The hidden layer neurons’ weights matrix.

2 : H =
P1,0

(
g(ac1,1), . . . , g(a

c
1,h)
)

. . . P1,2h−1

(
g(ac1,1), . . . , g(a

c
1,h)
)

... · · ·
...

PN,0

(
g(acN,1), . . . , g(a

c
N,h)

)
. . . PN,2h−1

(
g(acN,1), . . . , g(a

c
N,h)

)

N×2h

The hidden layer matrix H.

3 : T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

The target output matrix.

4 : βc = H†T

Calculation of the output weights matrix.

5.2. The multi-cube ELM networks

The following section defines the mathematical models and pseudo-codes345

for three multi-cube SLNN adaptations, which cover all possible combinations

between multi-cube and low-order unit types.

5.2.1. The multi-cube/low-order ELM network

The multi-cube/low-order SLNN contains multi-cube neurons in the hid-

den layer and low-order neurons in the output layer. The mathematical model350

defining this network type is shown in formula (9).

23


g(amc

1,1) . . . g(amc
1,h)

... · · ·
...

g(amc
N,1) . . . g(amc

N,h)


N×h

·


βl
1,1 . . . βl

1,m

... . . .
...

βl
h,1 . . . βl

h,m


h×m

=


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

(9)

In the above mathematical model:

� g is the activation function.

� amc =

amc
1,1



x1,1

...

x1,n


T

,


wmc

0,1

...

wmc
ph−1,1


 . . . amc

1,h



x1,1

...

x1,n


T

,


wc

0,h

...

wmc
ph−1,h




... · · ·
...

amc
N,1



xN,1

...

xN,n


T

,


wmc

0,1

...

wmc
ph−1,1


 . . . amc

N,h



xN,1

...

xN,n


T

,


wmc

0,h

...

wmc
ph−1,h





N×h

∈355

RN×h is the multi-cube activation matrix.

� x =


x1,1 . . . x1,n

... . . .
...

xN,1 . . . xN,n


N×n

∈ RN×n contains the input values.

� n are the neuron inputs.

� wmc =


wmc

0,1 . . . wmc
0,h

... . . .
...

wmc
ph−1,1 . . . wmc

ph−1,h


ph×h

∈ Rph×h is the input weights ma-

trix.360

� ph is the hidden layer weights number.

24

� h is the hidden layer neurons number.

� N defines the number of input samples.

� βl =


βl
1,1 . . . βl

1,m

... . . .
...

βl
h,1 . . . βl

h,m


h×m

∈ Rh×m is the output layer weights matrix.

� m is the output layer neurons number.365

� T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

denotes the target output matrix.

The ELM training process of an SLNN containing multi-cube hidden layer

and low-order output layer nodes begins by randomizing the hidden layer weights

matrix having ph × h weights as seen in line 1 of Algorithm 5.

Algorithm 5 : Multi-Cube/Low-Order ELM

1 : wmc =


wmc

0,1 . . . wmc
0,h

... . . .
...

wmc
ph−1,1 . . . wmc

ph−1,h


ph×h

The hidden layer neurons’ weights matrix.

2 : H =


g(amc

1,1) . . . g(amc
1,h)

... · · ·
...

g(amc
N,1) . . . g(amc

N,h)


N×h

The hidden layer matrix H.

3 : T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

The target output matrix.

4 : βl = H†T

Calculation of the output weights matrix.

The next line creates the hidden layer output matrix H, which contains the370

25

hidden layer neuron outputs of every training pattern introduced to the model.

Line 3 defines the target output matrix containing the expected network output

values. The algorithm finishes by calculating the linear neuron output weights

matrix βl where the Moore-Penrose pseudo-inverse of the hidden layer matrix

H is multiplied by the target output matrix T .375

5.2.2. The low-order/multi-cube ELM network

The low-order/multi-cube SLNN contains low-order units in the hidden layer

and multi-cube units in the output layer. The mathematical model defining this

network type is shown in formula (10).


P1,0

(
g(al1,1), . . . , g(a

l
1,h)
)

. . . P1,po−1

(
g(al1,1), . . . , g(a

l
1,h)
)

... · · ·
...

PN,0

(
g(alN,1), . . . , g(a

l
N,h)

)
. . . PN,po−1

(
g(alN,1), . . . , g(a

l
N,h)

)

N×po

·


βmc
0,1 . . . βmc

0,m

... . . .
...

βmc
po−1,1 . . . βmc

po−1,m


po×m

=


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

(10)

In the above mathematical model:380

� P is the probability function.

� g is the activation function.

� al =

al1,1



x1,1

...

x1,n


T 

wl
1,1

...

wl
n,1

+ θ1

 . . . al1,h



x1,1

...

x1,n


T 

wl
1,h

...

wl
n,h

+ θh


... · · ·

...

alN,1



xN,1

...

xN,n


T 

wl
1,1

...

wl
n,1

+ θ1

 . . . alN,h



xN,1

...

xN,n


T 

wl
1,h

...

wl
n,h

+ θh




N×h

∈

26

RN×h is the linear activation matrix.385

� x =


x1,1 . . . x1,n

... . . .
...

xN,1 . . . xN,n


N×n

∈ RN×n contains the input values.

� n are the neuron inputs.

� wl =


wl

1,1 . . . wl
1,h

... . . .
...

wl
n,1 . . . wl

n,h


n×h

∈ Rn×h defines the input weights matrix.

� θ = [θ1 . . . θh] ∈ Rh is the threshold vector.

� h is the hidden layer neurons number.390

� po is the output layer weights number.

� N defines the number of input samples.

� βmc =


βmc
0,1 . . . βmc

0,m

... . . .
...

βmc
po−1,1 . . . βmc

po−1,m


po×m

∈ Rpo×m is the output layer weights

matrix.

� m is the output layer neurons number.395

� T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

∈ RN×m denotes the target output matrix.

The ELM training process of an SLNN containing low-order hidden layer and

multi-cube output layer nodes begins by randomizing the hidden layer weights

and thresholds as seen in the first two lines of Algorithm 6.

27

Algorithm 6 : Low-Order/Multi-Cube ELM

1 : wl =


wl

1,1 . . . wl
1,h

... . . .
...

wl
n,1 . . . wl

n,h


n×h

The hidden layer neurons’ weights matrix.

2 : θ = [θ1, . . . , θh]

The hidden layer neurons’ thresholds vector.

3 : H =
P1,0

(
g(al1,1), . . . , g(a

l
1,h)
)

. . . P1,po−1

(
g(al1,1), . . . , g(a

l
1,h)
)

... · · ·
...

PN,0

(
g(alN,1), . . . , g(a

l
N,h)

)
. . . PN,po−1

(
g(alN,1), . . . , g(a

l
N,h)

)

N×po

The hidden layer matrix H.

4 : T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

The target output matrix.

5 : βmc = H†T

Calculation of the output weights matrix.

The next line creates the hidden layer output matrix H, which contains the400

hidden layer neuron outputs of every training pattern introduced to the model.

Line 4 defines the target output matrix containing the expected network output

values. The algorithm finishes by calculating the multi-cube neuron output

weights matrix βmc where the Moore-Penrose pseudo-inverse of the hidden layer

matrix H is multiplied by the target output matrix T .405

5.2.3. The multi-cube/multi-cube ELM network

The multi-cube/multi-cube SLNN contains multi-cube neurons in both hid-

den and output layers. The mathematical model defining this network type is

28

shown in formula (11).
P1,0

(
g(amc

1,1), . . . , g(a
mc
1,h)

)
. . . P1,po−1

(
g(amc

1,1), . . . , g(a
mc
1,h)

)
... · · ·

...

PN,0

(
g(amc

N,1), . . . , g(a
mc
N,h)

)
. . . PN,po−1

(
g(amc

N,1), . . . , g(a
mc
N,h)

)


N×po

·


βmc
0,1 . . . βmc

0,m

... . . .
...

βmc
po−1,1 . . . βmc

po−1,m


po×m

=


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

(11)

In the above mathematical model:

� P is the probability function.

� g is the activation function.

� amc =410 

amc
1,1



x1,1

...

x1,n


T

,


wmc

0,1

...

wmc
ph−1,1


 . . . amc

1,h



x1,1

...

x1,n


T

,


wmc

0,h

...

wmc
ph−1,h




... · · ·
...

amc
N,1



xN,1

...

xN,n


T

,


wmc

0,1

...

wmc
ph−1,1


 . . . amc

N,h



x1,1

...

x1,n


T

,


wmc

0,h

...

wmc
ph−1,h





N×h

∈

RN×h is the multi-cube activation matrix.

� x =


x1,1 . . . x1,n

... . . .
...

xN,1 . . . xN,n


N×n

∈ RN×n contains the input values.

� n are the neuron inputs.

� wmc =


wmc

0,1 . . . wmc
0,h

... . . .
...

wmc
ph−1,1 . . . wmc

ph−1,h


ph×h

∈ Rph×h defines the input weights415

matrix.

29

� ph is the hidden layer weights number.

� θ = [θ1 . . . θh] ∈ Rh is the threshold vector.

� h is the hidden layer neurons number.

� po is the output layer weights number.420

� N defines the number of input samples.

� βmc =


βmc
0,1 . . . βmc

0,m

... . . .
...

βmc
po−1,1 . . . βmc

po−1,m


po×m

∈ Rpo×m is the output layer weights

matrix.

� m is the output layer neurons number.

� T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

∈ RN×m denotes the target output matrix.425

The ELM training process of an SLNN containing multi-cube hidden and

output layer nodes begins by randomizing the hidden layer weights matrix hav-

ing ph×h weights, as seen in line 1 of Algorithm 7. The following line creates the

hidden layer output matrix H, which contains the hidden layer neuron outputs

of every training pattern introduced to the model. Line 3 defines the target430

output matrix containing the expected network output values. The algorithm

finishes by calculating the multi-cube neuron output weights matrix βmc where

the Moore-Penrose pseudo-inverse of the hidden layer matrix H is multiplied by

the target output matrix T .

30

Algorithm 7 : Multi-Cube/Multi-Cube ELM

1 : wmc =


wmc

0,1 . . . wmc
0,h

... . . .
...

wmc
ph−1,1 . . . wc

ph−1,h


n×h

The hidden layer neurons’ weights matrix.

2 : H =
P1,0

(
g(amc

1,1), . . . , g(a
mc
1,h)
)

. . . P1,po−1

(
g(amc

1,1), . . . , g(a
mc
1,h)
)

... · · ·
...

PN,0

(
g(amc

N,1), . . . , g(a
mc
N,h)

)
. . . PN,po−1

(
g(amc

N,1), . . . , g(a
mc
N,h)

)

N×po

The hidden layer matrix H.

3 : T =


t1,1 . . . t1,m
... . . .

...

tN,1 . . . tN,m


N×m

The target output matrix.

4 : βmc = H†T

Calculation of the output weights matrix.

6. Experimental work and simulations435

The six proposed ELM-variations are compared with traditional ELM in 15

classification and 10 regression real world datasets taken from the University of

California, Irvine (UCI) machine learning repository (Dua & Graff, 2017) and

www.kaggle.com website. The experimental part utilized binary and multi-class

classification problems having different number of attributes as seen in Table 3.440

The first dataset is “balance scale” which was created for modeling psycholog-

ical experimental results. Next, the “electroencephalogram (EEG) eye state”

dataset contains data from a single continuous 117 second EEG measurement

using the EEG neuro-headset from EMOTIV. “HIV-1 protease cleavage” is a

list of octamers and a binary flag. The flag’s value depends on weather the HIV-445

1 protease will cleave at the center (Rögnvaldsson et al., 2015). “Indoor user

movement prediction from radio signal strength (RSS) data” contains real-life

31

www.kaggle.com

benchmark data from ambient assisted living applications (Bacciu et al., 2014).

“Leaf” is a set of 36 leaf specimens with 15 input attributes which were reduced

to 14 by removing the “specimen number” attribute.450

Table 3: Classification Datasets Characteristics

Dataset Inputs Outputs Entries

Balance Scale 4 3 625

EEG Eye State 14 2 14980

HIV-1 Protease Cleavage 8 2 746

Indoor User Movement Prediction

from RSS Data
4 2 13197

Leaf 14 36 340

Mammographic Mass 5 2 961

Maternal Health Risk 6 3 1014

Nursery 8 5 12960

Page Blocks 10 5 5473

Qualitative Bankruptcy 6 2 250

Seeds 7 3 210

Speaker Accent Recognition 12 6 329

Statlog Heart 13 2 270

Wine 13 3 178

Yeast 8 10 1484

“Mammographic mass” contains entries for predicting the seriousness of a mam-

mographic mass lesion utilizing the patient’s age combined with breast imaging

reporting and data system attributes (Elter et al., 2007). This dataset contained

missing values which were replaced with the average values taken from the avail-

able data. “Maternal health risk” has entries taken from different health insti-455

tutions in Bangladesh using a risk monitoring system. “Nursery” dataset was

created from a hierarchical decision model for ranking nursery schools’ applica-

tions. “Page blocks” contains entries for classifying all page layout blocks from

a detected document during a segmentation process. “Qualitative bankruptcy”

32

has qualitative input attributes for predicting bankruptcy. “Seeds” has geo-460

metrical properties of kernels taken from three wheat types. “Speaker accent

recognition” contains data for accent detection and recognition taken from six

countries. “Statlog Heart” is a heart disease database. “Wine” dataset contains

chemical analysis data for determining wines’ origin while “yeast” has attributes

for predicting the cellular localization sites of proteins.465

The characteristics of the 10 regression datasets are summarized in Table 4.

Table 4: Regression Datasets Characteristics

Dataset Inputs Outputs Entries

Airfoil Self Noise 5 1 1503

Auto MPG 8 1 398

California Housing Prices 9 1 20640

Carbon Nanotubes 5 3 10721

Combined Cycle Power Plant 4 1 9568

Concrete Compressive Strength 8 1 1030

Concrete Slump Test 7 3 103

QSAR Fish Toxicity 6 1 908

Synchronous Machine 4 1 557

Yacht Hydrodynamics 6 1 308

The first dataset is “airfoil self-noise” which contains data from aerodynamic and

acoustic tests. “Auto miles per gallon (MPG)” dataset has data regarding city-

cycle fuel consumption. “California housing prices” has the median house prices

taken during 1990 in various California areas. This dataset contained missing470

values which were replaced with the average values taken from the available

data. “Carbon nanotubes” contains initial and computed atomic coordinates

from carbon nanotubes (Acı & Avcı, 2016; Aci et al., 2017). “Combined cycle

power plant” has data points gathered from a plant working on full load during

six years (Kaya et al., 2012; Tüfekci, 2014). “Concrete compressive strength”475

dataset contains attributes for predicting the compressive strength of concrete

(Yeh, 1998). On the other hand, the “concrete slump test” dataset contains en-

33

tries for predicting its slump flow (Yeh, 2007). “Quantitative structure-activity

relationship (QSAR) fish toxicity” has data for predicting quantitative acute

aquatic toxicity of fathead minnow fish (Cassotti et al., 2015). “Synchronous480

machine” contains real-time data from an experimental set (Kahraman et al.,

2012; Kahraman, 2014). Finally, the “yacht hydrodynamics” dataset contains

entries for predicting sailing yachts’ hydrodynamic performance. The prediction

algorithm receives as input the yachts’ dimensions and velocity.

6.1. Parameter details485

The experiments were run using the MATLAB 2017a environment and the

user defined parameters are summarized in Table 5.

Table 5: Experiment Settings

Parameter Name Symbol Values/Types

Linear Neuron Weights wl [−1, 1]n, n ∈ N∗

Cubic Neuron Weights wc [−1, 1]2
n

, n ∈ N∗

Multi-Cube Neuron Weights wmc [−1, 1]pno , pno ∈ N∗

Threshold θ [−1, 1]

Inputs x [−1, 1]n, n ∈ N∗

Activation Function g sigmoid

Hidden Layer Neurons No h 10

Folds No k 5

Experiment Sets expNo 10

The linear, cubic, and multi-cube neuron weight values were chosen randomly

from the uniform distribution. Moreover, they were restricted inside the [−1, 1]

interval along with the linear unit type threshold. The input datasets were490

also normalized into the [−1, 1] interval approximately by dividing each input’s

attribute with their corresponding maximum absolute attribute value. The

experimental part used a fixed hidden layer with ten nodes and the sigmoid

function as the transfer function for all methods. The 5-fold cross-validation

method was adopted, and all experiment runs were repeated ten times with495

34

different random values for the hidden node weights and thresholds. This ex-

perimental design was applied to avoid potential bias due to the random ini-

tialization of the hidden weights and thresholds. Finally, the MATLAB imple-

mentation for all the higher-order and multi-cube neuron combinations and the

classic ELM algorithm (seven methods in total) are available for download in500

https://github.com/bchristou1/HigherOrderELM.

6.2. Classification problems

The experimental results in terms of classification accuracy (acc) from the

comparison of ELM with the three cubic neuron methods are summarized in

Table 6.505

Table 6: Classification Results of ELM and the Three Higher-Order Neuron Networks

Dataset ELM
Cubic/

Linear

Linear/

Cubic

Cubic/

Cubic

Balance Scale 85.23% 51.92% 89.33% 47.07%

EEG Eye State 57.61% 69.77% 57.90% 66.66%

HIV-1 Protease Cleavage 64.15% 60.22% 67.37% 62.93%

Indoor User Movement

Prediction from RSS Data
65.66% 71.67% 64.92% 72.11%

Leaf 29.82% 28.88% 36.41% 56.32%

Mammographic Mass 78.53% 73.54% 79.39% 74.95%

Maternal Health Risk 61.94% 75.52% 62.74% 76.74%

Nursery 59.97% 83.73% 73.86% 91.29%

Page Blocks 92.14% 95.14% 92.19% 95.85%

Qualitative Bankruptcy 94.64% 94.32% 99.24% 99.68%

Seeds 92.48% 79.14% 96.10% 60.71%

Speaker Accent Recognition 54.76% 32.62% 56.62% 42.72%

Statlog Heart 70.96% 58.70% 77.89% 59.33%

Wine 83.61% 59.13% 91.96% 67.20%

Yeast 52.00% 50.21% 54.85% 54.03%

It is shown that in all 15 cases, at least one higher-order SLNN managed to

35

https://github.com/bchristou1/HigherOrderELM

get higher classification accuracy than traditional ELM (they are marked with

bold font). The classification accuracy is calculated using formula 12 where k

denotes the number of folds and (err) is the number of miss-classified patterns

(ppat).

acc =
1

k

k∑
i=1

(
1− err

ppat

)
(12)

The significance of these results was tested using the Wilcoxon signed-rank

test, a non-parametric statistical hypothesis test. It is utilized to evaluate a

population’s location based on a data sample or compare two populations’ lo-

cations by utilizing two matching samples. The Wilcoxon signed-rank test’s

outcome is a p value. If this value is below a specific threshold (usually 5%),510

it can be concluded that the samples are from different populations (Conover,

1999). The p values from comparing ELM with the best higher-order-based

SLNN are visualized in Table 7.

Table 7: Wilcoxon Signed-Rank Test Classification Results for Higher-Order Neuron Networks

Dataset
Wilcoxon signed-rank test

p value

Balance Scale 0.0000000258

EEG Eye State 0.0000000008

HIV-1 Protease Cleavage 0.0001137480

Indoor User Movement

Prediction from RSS Data
0.0000000008

Leaf 0.0000000007

Mammographic Mass 0.0264583076

Maternal Health Risk 0.0000000008

Nursery 0.0000000008

Page Blocks 0.0000000008

Qualitative Bankruptcy 0.0000000607

Seeds 0.0000013999

Speaker Accent Recognition 0.0363540214

Statlog Heart 0.0000016257

Wine 0.0000254932

Yeast 0.0000038329

The two sample vectors introduced as input to the Wilcoxon signed-rank test

36

contained 50 values (5 folds × 10 experiment repeats). It is shown from the p515

values in Table 7 that in all cases, they were below the 5% threshold, indicating

that the comparison results are statistically significant.

The experimental results in terms of classification accuracy (acc) from the

comparison of ELM with the three multi-cube neuron methods are summarized

in Table 8.520

Table 8: Classification Results of ELM and the Three Multi-Cube Neuron Networks

Dataset ELM
MultiCube/

Linear

Linear/

MultiCube

MultiCube/

MultiCube

Balance Scale 85.23% 86.48% 89.73% 90.00%

EEG Eye State 57.61% 58.31% 58.18% 58.71%

HIV-1 Protease

Cleavage
64.15% 66.06% 68.01% 69.09%

Indoor User

Movement Prediction

from RSS Data

65.66% 65.79% 65.81% 66.42%

Leaf 29.82% 34.15% 42.38% 45.56%

Mammographic Mass 78.53% 78.85% 80.32% 80.87%

Maternal Health Risk 61.94% 62.08% 64.15% 64.88%

Nursery 59.97% 63.29% 85.07% 85.94%

Page Blocks 92.14% 92.45% 92.39% 92.45%

Qualitative Bankruptcy 94.64% 96.04% 99.56% 99.56%

Seeds 92.48% 94.24% 96.76% 96.43%

Speaker Accent

Recognition
54.76% 57.48% 59.68% 61.12%

Statlog Heart 70.96% 73.81% 82.00% 82.81%

Wine 83.61% 85.48% 94.99% 95.22%

Yeast 52.00% 53.59% 55.70% 56.11%

It is shown that in all 15 cases, at least one multi-cube SLNN got higher classi-

fication accuracy than traditional ELM (marked with bold font).

37

The significance of these results was tested using the Wilcoxon signed-rank

test. The p values from comparing ELM with the best multi-cube-based SLNN

are visualized in Table 9.525

Table 9: Wilcoxon Signed-Rank Test Classification Results for Multi-Cube Neuron Networks

Dataset
Wilcoxon signed-rank test

p value

Balance Scale 0.0000000074

EEG Eye State 0.0000166316

HIV-1 Protease Cleavage 0.0000000845

Indoor User Movement

Prediction from RSS Data
0.0042372699

Leaf 0.0000000007

Mammographic Mass 0.0000012946

Maternal Health Risk 0.0000004563

Nursery 0.0000000008

Page Blocks 0.0198564122

Qualitative Bankruptcy 0.0000000309

Seeds 0.0000001533

speaker Accent Recognition 0.0000001847

Statlog Heart 0.0000000014

Wine 0.0000000176

Yeast 0.0000000036

It is shown from the p values in Table 9 that in all cases, they were below the

5% threshold, indicating that the comparison results are statistically significant.

6.3. Regression problems

The experimental results in terms of mean square error (MSE) from the

comparison of ELM with the three cubic neuron methods are summarized in530

Table 10.

38

Table 10: Regression Results of ELM and the Three Higher-Order Neuron Networks

Dataset ELM
Cubic/

Linear

Linear/

Cubic

Cubic/

Cubic

Airfoil Self Noise 0.0045706201 0.0045706201 2.3101010533 0.0010542772

Auto MPG 0.0114402686 8862.0611659 0.0051611919 21.354901549

California

Housing Prices
0.0284458575 2.3699995426 0.0255194123 0.3012180644

Carbon Nanotubes 0.0322716299 0.0039305962 0.0049386383 0.0000708821

Combined Cycle

Power Plant
0.0002264695 0.0000679103 0.0000758965 0.0000658865

Concrete Compressive

Strength
0.0280140475 9.1773606812 0.0188405222 0.2306207118

Concrete Slump Test 0.0491058296 655.05887151 0.0366121605 3.0171044070

QSAR Fish Toxicity 0.0139586256 35640211.855 0.0105666324 2448.4422511

Synchronous Machine 0.0003527827 0.0000000031 0.0000006875 0.0000000001

Yacht Hydrodynamics 0.0207609732 0.0022851373 0.0246121941 0.0002876932

It is shown that in all 10 cases, at least one higher-order SLNN managed to get

lower MSE than traditional ELM (they are marked with bold font). The MSE

is calculated using formula 13 where k denotes the number of folds, ppat is the

number of input patterns, tij is the current target value and yij is the current

network output value.

MSE =
1

kppat

k∑
j=1

(
ppat∑
i=1

(tij − yij)
2

)
(13)

The significance of these results was tested using the Wilcoxon signed-rank

test. The p values from comparing ELM with the best higher-order-based SLNN

are visualized in Table 11.

39

Table 11: Wilcoxon Signed-Rank Test Regression Results for Higher-Order Neuron Networks

Dataset
Wilcoxon signed-rank test

p value

Airfoil Self Noise 0.0000000015

Auto MPG 0.0000000277

California

Housing Prices
0.0003233387

Carbon Nanotubes 0.0000000008

Combined Cycle

Power Plant
0.0000000008

Concrete Compressive

Strength
0.0000038542

Concrete Slump Test 0.0000087755

QSAR Fish Toxicity 0.0000000385

Synchronous Machine 0.0000000008

Yacht Hydrodynamics 0.0000000008

It is shown from the p values in Table 11 that in all cases, they were below the535

5% threshold, indicating that the comparison results are statistically significant.

The experimental results in terms of MSE from the comparison of ELM

with the three multi-cube neuron methods are summarized in Table 12. It is

shown that in all 10 cases, at least one multi-cube SLNN got lower MSE than

traditional ELM (marked with bold font).540

40

Table 12: Regression Results of ELM and the Three Higher-Order Neuron Networks

Dataset ELM
MultiCube/

Linear

Linear/

MultiCube

MultiCube/

MultiCube

Airfoil Self Noise 0.0045706201 0.0012622568 0.0010796858 0.0010833991

Auto MPG 0.0114402686 0.0061519741 0.0047101989 0.0045328270

California

Housing Prices
0.0284458575 0.0257346565 0.0225020954 0.0216683755

Carbon Nanotubes 0.0322716299 0.0115985326 0.0002601128 0.0002010187

Combined Cycle

Power Plant
0.0002264695 0.0000773334 0.0000756647 0.0000752948

Concrete Compressive

Strength
0.0280140475 0.0178677258 0.0152020538 0.0149246718

Concrete Slump Test 0.0491058296 0.0427722855 0.0337404423 0.0318368830

QSAR Fish Toxicity 0.0139586256 0.0107685711 0.0099209195 0.0099418562

Synchronous Machine 0.0003527827 0.0000218708 0.0000000497 0.0000000164

Yacht Hydrodynamics 0.0207609732 0.0201042234 0.0134259389 0.0123262905

The significance of these results was tested using the Wilcoxon signed-rank

test. The p values from comparing ELM with the best multi-cube-based SLNN

are visualized in Table 13.

Table 13: Wilcoxon Signed-Rank Test Classification Results for Multi-Cube Neuron Networks

Dataset
Wilcoxon signed-rank test

p value

Airfoil Self Noise 0.0000000012

Auto MPG 0.0000000015

California

Housing Prices
0.0000000012

Carbon Nanotubes 0.0000000008

Combined Cycle

Power Plant
0.0000000013

Concrete Compressive

Strength
0.0000000019

Concrete Slump Test 0.0000000054

QSAR Fish Toxicity 0.0000000025

Synchronous Machine 0.0000000008

Yacht Hydrodynamics 0.0000038542

41

It is shown from the p values in Table 13 that in all cases, they were below the

5% threshold, indicating that the comparison results are statistically significant.545

7. Discussion

The experimental results from comparing the higher-order ELM variants

with traditional ELM revealed that in the classification problems, the linear-

cubic and cubic/cubic networks managed to get the highest accuracy values in

14/15 datasets (8/15 for linear/cubic and 6/15 for cubic/cubic networks). These550

results were also consistent in the regression problems where 50% of the datasets

(5/10) were linear/cubic, and the other 50% were cubic/cubic networks. Con-

sidering these findings, it is evident that the cubic neuron(s) in the output layer

can contribute to a significant increase in the SLNN’s generalization ability. The

linear neuron(s) in the low-order SLNNs trained by the classic ELM algorithm555

provides a simple weighted aggregation of the hidden layer neurons’ outputs in

contrast to the more complex probabilistic model adopted by the higher-order

neurons.

The comparison between the multi-cube SLNN variants with traditional

ELM revealed that the multi-cube/multi-cube networks in 12/15 datasets had560

the best accuracy in the classification problems. Two datasets (“page blocks”

and “qualitative bankruptcy”) had the same accuracy values with the multi-

cube/linear and linear/multi-cube networks. Only in the “seeds” dataset did

the linear/multi-cube networks get a higher accuracy value than the multi-

cube/multi-cube network. These results were also consistent in the regression565

problems where the multi-cube/multi-cube networks had the lowest MSE in

8/10 datasets. In comparison, the lowest MSE from the other two datasets was

achieved by the linear/multi-cube networks. Considering these findings, it is ev-

ident that an ELM-trained SLNN with multi-cube units having one-dimension

sub-cubes has lower MSE in most cases than SLNNs with low-order units in570

all layers. This finding shows that having multi-cube units with one-dimension

sub-cubes in all layers increases the network’s generalization ability.

42

8. Conclusion

The present article generalizes the ELM training algorithm for work with

SLNNs having the cubic and multi-cube neurons proposed by (Gurney, 1989). A575

total number of six algorithms have been presented, which cover all combinations

between cubic/low-order and multi-cube/low-order units.

The experimental results section tested the proposed six algorithms with

traditional ELM in a series of classification and regression problems. The ex-

perimental results revealed that at least one cubic and multi-cube network had580

better generalization in all cases. Also, in most cases, using higher-order/multi-

cube units in the output layer created networks with better generalization abil-

ity. This finding indicates that the probabilistic nature of higher-order neurons

increases the classification accuracy or reduces the MSE in regression problems

compared to the single aggregation provided by the low-order neurons.585

Funding

We acknowledge support of this work by the project “MEGATRON” (MIS

5047227) which is implemented under the Action “Reinforcement of the Re-

search and Innovation Infrastructure”, funded by the Operational Programme

“Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and590

co-financed by Greece and the European Union (European Regional Develop-

ment Fund).

References

Acı, M., & Avcı, M. (2016). Artificial neural network approach for atomic

coordinate prediction of carbon nanotubes. Applied Physics A, 122 , 1–14.595

Aci, M., Avci, M. et al. (2017). Reducing simulation duration of carbon nan-

otube using support vector regression method. Journal of the Faculty of

Engineering and Architecture of Gazi University , 32 .

43

nikos
Highlight

Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., & Micheli, A. (2014).

An experimental characterization of reservoir computing in ambient assisted600

living applications. Neural Computing and Applications, 24 , 1451–1464.

Cai, W., Yang, J., Yu, Y., Song, Y., Zhou, T., & Qin, J. (2020). PSO-ELM: A

hybrid learning model for short-term traffic flow forecasting. IEEE access, 8 ,

6505–6514.

Cao, J., Lin, Z., & Huang, G.-B. (2012a). Self-adaptive evolutionary extreme605

learning machine. Neural processing letters, 36 , 285–305.

Cao, J., Lin, Z., Huang, G.-B., & Liu, N. (2012b). Voting based extreme learning

machine. Information Sciences, 185 , 66–77.

Cao, J., Zhang, K., Yong, H., Lai, X., Chen, B., & Lin, Z. (2018). Extreme

learning machine with affine transformation inputs in an activation function.610

IEEE transactions on neural networks and learning systems, 30 , 2093–2107.

Cao, L., Yue, Y., Zhang, Y., & Cai, Y. (2021). Improved crow search algorithm

optimized extreme learning machine based on classification algorithm and

application. IEEE Access, 9 , 20051–20066.

Cassotti, M., Ballabio, D., Todeschini, R., & Consonni, V. (2015). A similarity-615

based QSAR model for predicting acute toxicity towards the fathead minnow

(pimephales promelas). SAR and QSAR in Environmental Research, 26 ,

217–243.

Chen, H., & Yao, X. (2009). Regularized negative correlation learning for neural

network ensembles. IEEE Transactions on Neural Networks, 20 , 1962–1979.620

Chen, X., Hai, B., & Wang, L. (2021). Multiobjective parameters optimization

of extreme learning machine based on MOEA/D. In 2021 IEEE International

Conference on Artificial Intelligence and Computer Applications (ICAICA)

(pp. 321–324). IEEE.

44

Christou, V., Koritsoglou, K., Ntritsos, G., Tsoumanis, G., Tsipouras, M. G.,625

Giannakeas, N., Glavas, E., & Tzallas, A. T. (2022). Heterogeneous hybrid

extreme learning machine for temperature sensor accuracy improvement. Ex-

pert Systems with Applications, (p. 117488).

Christou, V., Ntritsos, G., Tzallas, A. T., Tsipouras, M. G., & Giannakeas,

N. (2020). Self-adaptive hybrid extreme learning machine for heterogeneous630

neural networks. In 2020 International Joint Conference on Neural Networks

(IJCNN) (pp. 1–8). doi:10.1109/IJCNN48605.2020.9207608.

Christou, V., Tsipouras, M. G., Giannakeas, N., & Tzallas, A. T. (2018). Hy-

brid extreme learning machine approach for homogeneous neural networks.

Neurocomputing , 311 , 397–412.635

Christou, V., Tsipouras, M. G., Giannakeas, N., Tzallas, A. T., & Brown, G.

(2019). Hybrid extreme learning machine approach for heterogeneous neural

networks. Neurocomputing , 361 , 137–150.

Conover, W. J. (1999). Practical nonparametric statistics volume 350. john

wiley & sons.640

Cui, Z., Huang, B., Dou, H., Tan, G., Zheng, S., & Zhou, T. (2022). GSA-

ELM: A hybrid learning model for short-term traffic flow forecasting. IET

Intelligent Transport Systems, 16 , 41–52.

Deng, W., Zheng, Q., & Zhang, K. (2013). Reduced kernel extreme learn-

ing machine. In Proceedings of the 8th international conference on computer645

recognition systems CORES 2013 (pp. 63–69). Springer.

Deng, W.-Y., Ong, Y.-S., & Zheng, Q.-H. (2016). A fast reduced kernel extreme

learning machine. Neural Networks, 76 , 29–38.

Deng, W.-Y., Zheng, Q.-H., & Wang, Z.-M. (2014). Cross-person activity recog-

nition using reduced kernel extreme learning machine. Neural Networks, 53 ,650

1–7.

45

http://dx.doi.org/10.1109/IJCNN48605.2020.9207608

Dou, J., Ma, H., Zhang, Y., Wang, S., Ye, Y., Li, S., & Hu, L. (2022). Extreme

learning machine model for state-of-charge estimation of lithium-ion battery

using salp swarm algorithm. Journal of Energy Storage, 52 , 104996.

Dua, D., & Graff, C. (2017). UCI machine learning repository. URL: http:655

//archive.ics.uci.edu/ml.

Elter, M., Schulz-Wendtland, R., & Wittenberg, T. (2007). The prediction of

breast cancer biopsy outcomes using two cad approaches that both emphasize

an intelligible decision process. Medical physics, 34 , 4164–4172.

Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their prop-660

erties. Cognitive science, 6 , 205–254.

Gurney, K. (2018). An introduction to neural networks. CRC press.

Gurney, K. N. (1989). Learning in networks of structured hypercubes. Ph.D.

thesis Brunel University London, UK.

Huang, G.-B., & Chen, L. (2007). Convex incremental extreme learning ma-665

chine. Neurocomputing , 70 , 3056–3062.

Huang, G.-B., Chen, L., Siew, C. K. et al. (2006a). Universal approximation us-

ing incremental constructive feedforward networks with random hidden nodes.

IEEE Trans. Neural Networks, 17 , 879–892.

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2011). Extreme learning670

machine for regression and multiclass classification. IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), 42 , 513–529.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: a

new learning scheme of feedforward neural networks. In 2004 IEEE interna-

tional joint conference on neural networks (IEEE Cat. No. 04CH37541) (pp.675

985–990). Ieee volume 2.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006b). Extreme learning machine:

theory and applications. Neurocomputing , 70 , 489–501.

46

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Kahraman, H., Bayindir, R., & Sagiroglu, S. (2012). A new approach to predict

the excitation current and parameter weightings of synchronous machines680

based on genetic algorithm-based k-NN estimator. Energy Conversion and

Management , 64 , 129–138.

Kahraman, H. T. (2014). Metaheuristic linear modeling technique for estimating

the excitation current of a synchronous motor. Turkish Journal of Electrical

Engineering and Computer Sciences, 22 , 1637–1652.685

Kaya, H., Tüfekci, P., & Gürgen, F. S. (2012). Local and global learning methods

for predicting power of a combined gas & steam turbine. In Proceedings of

the international conference on emerging trends in computer and electronics

engineering ICETCEE (pp. 13–18).

Liu, B., Chen, G., Lin, H.-C., Zhang, W., & Liu, J. (2021). Prediction of IGBT690

junction temperature using improved cuckoo search-based extreme learning

machine. Microelectronics Reliability , 124 , 114267.

Liu, Y., & Yao, X. (1997). Negatively correlated neural networks can produce

best ensembles. Australian journal of intelligent information processing sys-

tems, 4 , 176–185.695

Lu, F., Wu, J., Huang, J., & Qiu, X. (2019). Restricted-boltzmann-based ex-

treme learning machine for gas path fault diagnosis of turbofan engine. IEEE

Transactions on Industrial Informatics, 16 , 959–968.

Lu, H., Du, B., Liu, J., Xia, H., & Yeap, W. K. (2017). A kernel extreme

learning machine algorithm based on improved particle swam optimization.700

Memetic Computing , 9 , 121–128.

Luo, J., Vong, C.-M., & Wong, P.-K. (2013). Sparse Bayesian extreme learning

machine for multi-classification. IEEE Transactions on Neural Networks and

Learning Systems, 25 , 836–843.

47

Luo, J., Wong, C.-M., & Vong, C.-M. (2021). Multinomial Bayesian extreme705

learning machine for sparse and accurate classification model. Neurocomput-

ing , 423 , 24–33.

Mart́ınez-Mart́ınez, J. M., Escandell-Montero, P., Soria-Olivas, E., Mart́ın-

Guerrero, J. D., Magdalena-Benedito, R., & Gómez-Sanchis, J. (2011). Reg-

ularized extreme learning machine for regression problems. Neurocomputing ,710

74 , 3716–3721.

Mel, B., & Koch, C. (1989). Sigma-pi learning: On radial basis functions and

cortical associative learning. Advances in neural information processing sys-

tems, 2 .

Perales-González, C., Fernández-Navarro, F., Pérez-Rodŕıguez, J., &715

Carbonero-Ruz, M. (2021). Negative correlation hidden layer for the extreme

learning machine. Applied Soft Computing , 109 , 107482.

Rathod, N., & Wankhade, S. (2022). Optimizing neural network based on

cuckoo search and invasive weed optimization using extreme learning machine

approach. Neuroscience Informatics, (p. 100075).720

Rögnvaldsson, T., You, L., & Garwicz, D. (2015). State of the art prediction of

HIV-1 protease cleavage sites. Bioinformatics, 31 , 1204–1210.

Rumelhart, D. E., Hinton, G. E., McClelland, J. L. et al. (1986). A general

framework for parallel distributed processing. Parallel distributed processing:

Explorations in the microstructure of cognition, 1 , 26.725

Sevinc, E. (2019). A novel evolutionary algorithm for data classification problem

with extreme learning machines. IEEE Access, 7 , 122419–122427.

Shin, Y., & Ghosh, J. (1991). The pi-sigma network: An efficient higher-

order neural network for pattern classification and function approximation.

In IJCNN-91-Seattle international joint conference on neural networks (pp.730

13–18). IEEE volume 1.

48

Sulaiman, S., Jeyanthy, P. A., Devaraj, D., & Shihabudheen, K. (2022). A novel

hybrid short-term electricity forecasting technique for residential loads using

empirical mode decomposition and extreme learning machines. Computers &

Electrical Engineering , 98 , 107663.735

Tang, Y., & Li, C. (2021). An online network intrusion detection model based

on improved regularized extreme learning machine. IEEE Access, 9 , 94826–

94844.

Tian, X., Jiao, W., Liu, T., Ren, L., & Song, B. (2021). Leakage detection of low-

pressure gas distribution pipeline system based on linear fitting and extreme740

learning machine. International Journal of Pressure Vessels and Piping , 194 ,

104553.

Tüfekci, P. (2014). Prediction of full load electrical power output of a base

load operated combined cycle power plant using machine learning methods.

International Journal of Electrical Power & Energy Systems, 60 , 126–140.745

Wang, J., Lu, S., Wang, S.-H., & Zhang, Y.-D. (2021). A review on extreme

learning machine. Multimedia Tools and Applications, (pp. 1–50).

Wong, K. I., Vong, C. M., Wong, P. K., & Luo, J. (2015). Sparse Bayesian

extreme learning machine and its application to biofuel engine performance

prediction. Neurocomputing , 149 , 397–404.750

Wu, Y., Zhang, Y., Liu, X., Cai, Z., & Cai, Y. (2018). A multiobjective

optimization-based sparse extreme learning machine algorithm. Neurocom-

puting , 317 , 88–100.

Xing, H.-J., & Wang, X.-M. (2013). Training extreme learning machine via

regularized correntropy criterion. Neural Computing and Applications, 23 ,755

1977–1986.

Xu, Z., Yao, M., Wu, Z., & Dai, W. (2016). Incremental regularized extreme

learning machine and it’s enhancement. Neurocomputing , 174 , 134–142.

49

Yeh, I.-C. (1998). Modeling of strength of high-performance concrete using

artificial neural networks. Cement and Concrete research, 28 , 1797–1808.760

Yeh, I.-C. (2007). Modeling slump flow of concrete using second-order regres-

sions and artificial neural networks. Cement and concrete composites, 29 ,

474–480.

Zhang, K., & Luo, M. (2015). Outlier-robust extreme learning machine for

regression problems. Neurocomputing , 151 , 1519–1527.765

Zhang, Q., Li, H., Liu, C., & Hu, W. (2013). A new extreme learning machine

optimized by firefly algorithm. In 2013 Sixth International Symposium on

Computational Intelligence and Design (pp. 133–136). IEEE volume 2.

Zhang, Y., Wu, J., Cai, Z., Zhang, P., & Chen, L. (2016). Memetic extreme

learning machine. Pattern Recognition, 58 , 135–148.770

Zhang, Z., Hou, R., & Yang, J. (2020). Detection of social network spam based

on improved extreme learning machine. IEEE Access, 8 , 112003–112014.

Zhu, Q.-Y., Qin, A. K., Suganthan, P. N., & Huang, G.-B. (2005). Evolutionary

extreme learning machine. Pattern recognition, 38 , 1759–1763.

50

	Introduction
	Literature review
	Node structures
	Linear units
	Cubic units
	Multi-cube units

	The ELM architecture
	The higher-order ELM architecture
	The higher-order ELM networks
	The higher-order/low-order ELM network
	The low-order/higher-order ELM network
	The higher-order/higher-order ELM network

	The multi-cube ELM networks
	The multi-cube/low-order ELM network
	The low-order/multi-cube ELM network
	The multi-cube/multi-cube ELM network

	Experimental work and simulations
	Parameter details
	Classification problems
	Regression problems

	Discussion
	Conclusion

