
Evolutionary Higher-Order Extreme Learning Machine

Vasileios Christoua,∗, Alexandros T. Tzallasa, Markos G. Tsipourasb,
Georgios Tsoumanisa, Nikolaos Giannakeasa

aDepartment of Informatics and Telecommunications, University of Ioannina, Arta,
Greece

bDepartment of Electrical and Computer Engineering, University of Western Macedonia,
Kozani, Greece

∗Corresponding Author.
Email addresses: bchristou1@gmail.com (Vasileios Christou), tzallas@uoi.gr

(Alexandros T. Tzallas), mtsipouras@uowm.gr (Markos G. Tsipouras), gtsoum@uoi.gr
(Georgios Tsoumanis), giannakeas@uoi.gr (Nikolaos Giannakeas)

Preprint submitted to Neural Networks September 15, 2023

Abstract

The low-order unit type is the most commonly used neuron architecture,
where each input is multiplied by a corresponding weight. These types are re-
stricted to linear separable problems, and overcoming this restriction would
require more advanced units. Higher-order units like the multi-cube neu-
ron treat the input vector as a set of multi-dimensional hyper-cubes where
each cube’s site corresponds to a weight. Multi-cube unit (MCU) single-
layer neural networks (SLNNs) can be trained with the extreme learning
machine (ELM) algorithm, which has a very fast training speed because it
does not use an iterative process like gradient-based methods. An SLNN is
trained by randomizing the hidden layer weights and thresholds, and then
with the help of the Moore-Penrose pseudo-inverse, it can analytically cal-
culate the output layer(s) weights. The proposed evolutionary higher-order
ELM (EHO-ELM) algorithm utilizes a modified self-adaptive genetic algo-
rithm (GA) to create an SLNN containing MCUs in its hidden and output
layers. EHO-ELM can automatically determine the optimal number and
structure of cubic sub-units for each MCU of the neural network. Also, it
can automatically tune the hidden layer weights and thresholds to increase
the constructed network’s generalization ability. This paper’s experimental
work section compares EHO-ELM in 18 datasets with 14 existing machine-
learning methods. The compared approaches include ten gradient-based
methods, support vector machine (SVM), and three ELM-based methods.
The experimental results revealed that the proposed method had the best
generalization performance. The significance of these results was verified
using the Wilcoxon sign-rank test.

Keywords:
extreme learning machine, higher-order neuron, genetic algorithm,
multi-cube neuron, single-layer neural network

1. Introduction

The extreme learning machine (ELM) method created by Huang et al.
(2004, 2006b) is a training algorithm for single-layer neural networks (SLNNs).
Its main advantage is very fast training speed since it can train an SLNN

2

in a two-step manner. Initially, it randomizes the hidden layer parame-
ters (weights and thresholds), and then, with the help of the Moore-Penrose
pseudo-inverse, it analytically calculates the network’s output neuron(s) weights.
Other advantages include simplicity and efficiency since it doesn’t require
user-defined parameters like the learning rate in gradient-based methods,
and local minima do not affect its performance. Besides the advantages men-
tioned above, ELM has some disadvantages, one of them being the random
initialization of the hidden layer parameters, which can affect its generaliza-
tion performance (Bhat et al., 2008; Javed et al., 2014).

The earlier work by Christou et al. (2018) utilizing the ELM algorithm
for training networks containing the higher-order (cubic) units proposed by
Gurney (1989) showed that the use of these neuron types could improve the
generalization ability of SLNNs. Cubic neurons treat the input vector as a
multi-dimensional hypercube where each site corresponds to a weight. In
these units, the number of weights rises exponentially according to the num-
ber of inputs (an n input vector will contain 2n weights), causing performance
issues. The solution to this problem was the creation of the multi-cube neu-
ron, where a larger hypercube is replaced with a set of sub-cubes having
smaller dimensions. The optimal number and dimensions of these sub-cubes
are open problems and can affect the performance of multi-cube neural net-
works.

The motivation behind creating the proposed evolutionary higher-order
ELM (EHO-ELM) algorithm was to create an optimal multi-cube SLNN
for each regression or classification problem. The hidden layer weights, the
number of sub-cubes in each neuron, and the dimension of each sub-cube
are automatically determined without any intervention from the user. EHO-
ELM utilizes a genetic algorithm (GA) that creates and evolves a series of
multi-cube neural networks. The multi-cube (MCU) SLNNs contain MCUs
in both layers. At the end of the evolution process, the best one is selected
as the most optimal according to a fitness criterion. The fitness criterion
was the mean square error (MSE) for regression problems and the accuracy
(acc) for classification problems.

EHO-ELM is self-adaptive and doesn’t require any parameter tuning from
the user’s perspective. The evolution begins by creating the initial population
containing a set of randomly created MCU networks. Then, the selection
operator trains the population using the ELM algorithm and selects the best
ones for the reproduction process using a fitness criterion. The reproduction
process uses a custom operator based on the uniform crossover (Syswerda

3

et al., 1989), which adapts the produced offspring for creating valid offspring.
A percentage of the reproduced population varying from 10%, 30% to a
maximum of 50% is mutated by randomly creating the weights from one of
its sub-cubes. The mutation operation is adaptive and gradually increases if
the reproduction process at the previous generation has not created a better
SLNN. The evolution process continues until no better SLNN is found for
five iterations (generations).

The paper is structured into seven main sections starting from the “In-
troduction”, which describes the problem and the proposed EHO-ELM al-
gorithm. It also explains the motivation behind its creation. The “Intro-
duction’ is followed by the “Literature review” and “Related work” sections,
where the former explores and compares existing works with EHO-ELM. The
latter contains five sub-sections explaining the structure of cubic and MCU
units, the ELM algorithm, its extension to MCU SLNNs, and the structure
of a typical GA. Then, the following section describes the EHO-ELM algo-
rithm. The fifth section presents the experimental results from comparing
EHO-ELM with 14 machine-learning methods in 18 datasets. The compari-
son is supplemented with the Wilcoxon signed-rank test to verify the results’
significance. The article finishes with the “Discussion” and “Conclusion”
sections.

2. Literature review

Many ELM variants are focused on improving the generalization perfor-
mance of the algorithm by tuning the hidden layer weights and thresholds.
The evolutionary ELM by Zhu et al. (2005) utilizes a differential evolutionary
algorithm for this task. Similarly, the self-adaptive evolutionary ELM by Cao
et al. (2012) uses a self-adaptive variant of the same algorithm. Differential
evolution is a GA variant for minimizing real-valued multi-modal objective
functions (Storn, 1996; Storn & Price, 1997). Alexander & Annamalai (2016)
utilized a GA with a novel elitism optimization method, speeding up the evo-
lution process and avoiding local optimums. Han et al. (2013) created the
improved particle swarm optimization ELM method, which uses an improved
version of the particle swarm optimization algorithm, an artificial life-inspired
algorithm closely related to evolutionary computation (Eberhart & Kennedy,
1995), to optimize the hidden nodes’ parameters. The optimization process
considers the root mean squared error (RMSE) on the validation set and the
norm of the output weights. Rathod & Wankhade (2022) combined cuckoo

4

search and invasive weed optimization algorithms with ELM. Cuckoo search
(Yang & Deb, 2009) is based on the breeding behavior of cuckoos, while
invasive weed optimization (Karimkashi & Kishk, 2010) is based on the col-
onization phenomenon of invasive weeds. The integration of cuckoo search
in invasive weed optimization is done to improve its convergence. Zhang
et al. (2016) combined a memetic algorithm with ELM. The memetic al-
gorithm (Moscato et al., 1989) is a hybrid GA that contains an individual
learning procedure to perform local refinements. Yang et al. (2022) used
the multi-strategy whale optimization algorithm to select the hidden layer
parameters of semi-supervised ELM (SS-ELM). The whale optimization al-
gorithm is nature-inspired and simulates the whale behavior during hunting
(Mirjalili & Lewis, 2016) while SS-ELM is a variant for semi-supervised tasks
(Huang et al., 2014). Cai et al. (2019) utilized an improved version of the
grey wolf optimization method to select the kernel ELM (KELM) algorithm
parameters. KELM is a method that integrates the kernel function into
ELM Huang et al. (2011). The improvement over the traditional grey wolf
optimizer, inspired by grey wolves’ leadership hierarchy and hunting habits
(Mirjalili et al., 2014), involved creating a new hierarchical mechanism for
improving its search capabilities. Similarly, Heidari et al. (2019) hybridized
another improved version of the grey wolf optimization algorithm with KELM
for tuning the latter’s parameters. This improved version included adopting
exploratory and exploitative techniques for enhancing the search capabilities
of the original grey wolf optimizer. Faris et al. (2020) utilized the salp swarm
algorithm, which imitates salps’ swarming behavior in oceans when navigat-
ing and searching for food, to select the hidden layer parameters (Mirjalili
et al., 2017). Mengcan et al. (2021) created the constrained voting ELM al-
gorithm for classification problems which calculates the hidden layer weights
and thresholds by combining the differences of between-class samples. A vot-
ing selection scheme is incorporated to improve its accuracy. Yu et al. (2021)
developed an improved version of the grasshopper optimization algorithm,
which utilizes the simulated annealing method to enhance its performance.
This improved version was applied to the KELM algorithm to optimize its pa-
rameters. The grasshopper optimizer Mirjalili et al. (2018) is nature-inspired
by the navigation of grasshopper swarms. Cao et al. (2021) hybridized the
crow search algorithm with particle swarm optimization to enhance the lat-
ter’s global search capability. This improved crow search algorithm version
was used to estimate the hidden layer weights and thresholds of ELM. Crow
search is a method based on the observation that crows store their food sur-

5

plus in hidden areas and retrieve it when they need it Askarzadeh (2016).
The above methods focus on tuning the hidden layer parameters of ELM
without considering higher-order units.

Existing ELM-based works regarding the higher-order units by Gurney
(1989) include the homogeneous hybrid ELM (Christou et al., 2018). The
authors divided the neuron into three structural units, namely (dendrite,
activation function, and activation-output function). Then, they created a
series of custom neuron types with different sub-units used in the hidden layer
of SLNNs trained with ELM. Each hidden layer utilized the same custom
neuron type. The experiments included low-order and cubic units. The paper
revealed that alternative neuron types got better generalization performance
than the traditional low-order unit type with the sigmoid transfer function.
An extension of this method was the heterogeneous hybrid ELM (Christou
et al., 2019), which works with low-order and multi-cube units. The authors
used a GA to evolve homogeneous (SLNNs with the same neuron types in
the hidden layer) networks into heterogeneous ones (SLNNs with different
combinations of hidden units). A self-adaptive version of this algorithm
was created by Christou et al. (2020) and was hybridized with the linear-
regression method to improve the accuracy of a low-cost temperature sensor
(Christou et al., 2022). Although the above methods can work with higher-
order neurons, they cannot tune the hidden-layer parameters. Moreover,
they are restricted to SLNNs with low-order units in their output layer(s).
The heterogeneous variants of the above algorithms work with multi-cube
units having a fixed sub-cube structure. Still, they cannot find an optimal
combination of sub-cube units for the multi-cube neurons of the created
SLNNs.

The self-adaptive version of the heterogeneous hybrid ELM shows some
similarities with the proposed EHO-ELM method since both methods are
self-adaptive and can create networks with different neuron type combina-
tions in their hidden layer. Existing methods to create ELM-based networks
with heterogeneous structures include the optimally pruned ELM (OP-ELM)
by Miche et al. (2009), which follows a three-stage approach. Initially, it
creates a large hidden layer containing different neuron types. Then, the sig-
nificance of each neuron is ranked using the multi-response sparse-regression
(MRSR) algorithm. MRSR utilizes a linearly parameterized model for se-
lecting the forward regressors in calculating a multi-variate target (Similä &
Tikka, 2005). The third step involves selecting the neurons forming the final
SLNN using leave-one-out cross-validation. The Tikhonov-regularized OP-

6

ELM improves the original OP-ELM by utilizing two regularization penalties.
The first is the L1 penalty for ranking the hidden layer neurons, while the
second is the L2 penalty on the regression weights (Miche et al., 2011). These
methods can create heterogeneous SLNNs but do not consider higher-order
units.

Other higher-order neuron types include the sigma-pi neurons by Rumel-
hart et al. (1986a), which are similar to the conjunctive units by Feldman &
Ballard (1982). The input is a weighted product sum from individual inputs
in these neurons. The sigma-pi neurons have the problem of exponentially
increasing weights according to the number of inputs. The pi-sigma units
(Shin & Ghosh, 1991) were created to circumvent this problem. A pi-sigma
network uses product cells as the output units for adopting the capabilities
of higher-order units while using fewer weights and processing units. The
multi-cube unit has the advantage over the pi-sigma neuron in that a user
can have the option to make groups of inputs and assign them a sub-cube
unit. This way can increase or reduce the number of weights used for specific
inputs and allows more control over the size of the weight vector.

Many ELM variants are used to solve specific problem types. Shariati
et al. (2022) hybridized the grey wolf optimizer with ELM for tuning the lat-
ter’s parameters. The resulting method was applied for predicting hardened
concrete compressive strength in cases where cement was partially replaced
with alternative pozzolans. Albadr et al. (2022) used particle swarm opti-
mization to optimize the hidden layer weights and thresholds of ELM. The
resulting method was used as a classifier for a COVID-19 detection method
using voice data from the respiratory system. Wang et al. (2022) tuned
ELM’s parameters using a GA and used this method to predict future color
trends. Dong et al. (2020) hybridized the bat algorithm with ELM for calcu-
lating the daily dew point temperature. The bat algorithm is nature-inspired
by the echolocation ability of bats (Yang, 2010). Dou et al. (2022) proposed
a hybrid approach for assessing the charging state of lithium-ion batteries.
The proposed method created an improved version of the salp swarm algo-
rithm for tuning the hidden layer parameters of ELM. This version incorpo-
rated chaotic mapping to distribute the initial individuals uniformly and the
sine cosine algorithm to improve the salp swarm algorithm’s update formula.
These methods focus on tuning the hidden layer parameters of ELM without
considering higher-order units.

The proposed EHO-ELM algorithm was compared with 14 machine learn-
ing methods in total. These methods included three ELM variants and the

7

support vector machine (SVM) algorithm. Besides traditional ELM, the ex-
perimental part included online sequential ELM (OS-ELM) and multi-cube
unit ELM (MCU-ELM). OS-ELM is an extension to the original ELM, en-
abling it to work with sequential data (Huang et al., 2005) while MCU-ELM
is an ELM extension for SLNNs with MCUs in both their layers Christou
(2023). The SVM algorithm creates a maximum margin hyperplane between
the data points of the two classes in a binary classification problem which
is then used to classify unknown data. In regression problems, support vec-
tor regression (SVR) is used instead, an adaptation of SVM for continuous
values (Zahir & Mahdi, 2015).

EHO-ELM was compared with ten back-propagation (BP) variants. The
original idea behind the BP algorithm was developed by Werbos (1974).
Still, it was widely accepted a few years later by the works of Rumelhart
et al. (1986b) in their entitled paper “Learning representations by back-
propagating errors” (Rumelhart et al., 1995). The Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm is a second-order quasi-Newton approach for nu-
merical optimization which uses the second-order derivative (Hessian ma-
trix) approximation update formula by Broyden (1970a,b), Fletcher (1970),
Goldfarb (1970), and Shanno (1970). The Powell-Beale conjugate gradi-
ent (PBCG) utilizes the conjugate gradient (CG) method, which minimizes
multi-variate functions. This BP variant has a linear convergence rate which
can be avoided by periodically restarting its iterative training procedure.
The restarting process is done automatically by considering the objective
function (Powell, 1977). The Fletcher-Reeves (FRCG) (Fletcher & Reeves,
1964; Scales, 1985) and Polak-Ribiére (PRCG) (Polak & Ribiere, 1969) CG
algorithms are generalizations of the CG method for non-linear optimization
problems using different conjugate direction update formulas. Scaled con-
jugate gradient (SCG) (Møller, 1993) utilizes a step size scaling mechanism
to speed up the training process. The steepest descent (SD)(Cauchy et al.,
1847; Meza, 2010) is one of the oldest and simplest methods for minimizing a
non-linear function but faces slow convergence issues. Gradient descent with
momentum (GDM) (Polyak, 1964) adds momentum to the gradient descent
(GD) optimization process for overcoming noisy gradient oscillations. The
momentum allows GD to converge faster. GD with momentum and adaptive
learning rate (GDMALR) (Endah et al., 2017) adds an adaptive learning rate
and momentum to GD. One-step secant (OSS) (Ginantra et al., 2021) BP
is a method that tries to bridge the gap between the quasi-Newton and CG
algorithms. Although it is more computationally intensive and needs higher

8

memory requirements per epoch than the CG algorithm, its advantage lies in
determining the next search direction. Resilient BP (RPROP) (Riedmiller &
Braun, 1993) performs a local adaptation of the weight updates by consider-
ing the error function to circumvent the disadvantages of GD. The above 14
machine-learning methods do not take into consideration higher-order neu-
rons. One exception was the MCU-ELM approach which utilizes MCUs in
all neurons of the SLNN, but it is unable to find the proper combination of
sub-cubes for each MCU.

3. Related work

This section describes the cubic and multi-cube units’ structure by Gur-
ney (1989). Then, it analyses the ELM training algorithm and presents its
extension for MCU SLNNs. The section concludes with a presentation of the
generic structure of a GA.

3.1. The cubic unit

The cubic neurons by Gurney (1989) do not assign one weight at each
introduced input like traditional low-order units but follow a more complex
structure that considers weights as hyper-cube sites. The weight assignment
follows the formula wc

no = 2n, n ∈ N where the c superscript defines the cubic
unit and n are the number of inputs. A visualization of the cubic neuron
structure can be seen in Fig. 1

9

Figure 1: A 3-dimensional hyper-cube. This figure depicts a 3-dimensional hyper-cube
with each site assigned to a neuron weight.

The cubic weights follow the probability function (Pµ) depicted in (1),
which defines their participation percentage in the neuron’s activation. In
this equation, n is the number of inputs, and xi is the current input. The
role of µ = µ1, µ2, . . . , µn is to alter the sign of each product term (1 + µixi)
from plus to minus and vice-versa by converting µ to binary form where each
binary symbol corresponds to a plus or minus (1 is defined as a plus while
0 as a minus). The inputs introduced to the cubic neuron must undergo a
normalization process, usually dividing each input feature with its highest
absolute feature value Gurney (1989).

Pµ =
1

2n

n∏
i=1

(1 + µixi) (1)

The cubic activation depicted in equation (2) multiplies each weight with
its corresponding probability determined by formula (1). Then, it adds them
together and computes their normalized average. The term 1

|wmaxc|
is utilized

for normalization purposes, which involve dividing each weight with the high-
est absolute weight value. The current weight value is defined using the wc

µ

symbol.

10

ac =
1

|wc
max|2n

2n−1∑
µ=0

wc
µ

n∏
i=1

(1 + µixi) (2)

In the activation part of the cubic unit depicted in Fig. 2, the input vector
[x1, . . . , xn] is introduced to the neuron, which creates the weight probabilities
using equation 1.

Figure 2: The cubic unit. Creating the neuron output involves introducing the input
vector [x1, . . . , xn] to the cubic unit, multiplying each weight with its corresponding prob-
ability. The probabilities are calculated using formula (1). After multiplying them by their
corresponding weight, they are added together and averaged using a normalized average,
forming the neuron’s activation. The activation’s output is sent to the activation function
(g), which computes the neuron’s output value y.

Each calculated probability is multiplied by its corresponding weight, they
are added all together, and their normalized average is calculated, forming
the activation. The outcome from the activation is used as input to the
activation function (g), which calculates the neuron’s output value y.

3.2. The multi-cube unit

The MCU was created to solve the exponential increase of weights prob-
lem in cubic units. Instead of using one high-dimension hyper-cube, the
MCU utilizes a series of low-dimension sub-cubes which greatly decreases
the number of weights. The sub-cubes forming one MCU can have different
dimensions, and the total number of weights in these unit types is defined
from the formula wmc

no = pno =
∑q

j=1 2
dj , (j, dj, q) ∈ N. In this equation,

the mc superscript defines the MCU type, the number of sub-cubes is indi-
cated by q, and d = [d1, d2, . . . , dq] contains the dimensions of each sub-cube.
Finally, the current sub-cube unit dimension, dj, is derived from vector d.

The activation function of the MCU is defined in formula (3) where the
term 1

|wmc
max|

is utilized for normalization purposes, which involve dividing each
weight with the highest absolute weight value.

11

amc =
1

|wmc
max|

q∑
j=1

1

2dj

2dj−1∑
µ=0

wmc
µ

dj∏
i=1

(1 + µixi) (3)

In the activation part of the MCU depicted in Fig. 3, the input vector
[x1, . . . , xn] is introduced to the neuron, which divides and assigns these in-
puts into several sub-cubes. The dimension for each sub-cube is taken from
vector d = [d1, d2, . . . , dq] which results to a

∑q
j=1 2

dj total number of weights.
For each sub-cube, the calculated probability is multiplied by its correspond-
ing weight, then they are added together and averaged using a normalized
average. The outcome from the activation is used as input to the activation
function (g), which calculates the neuron’s output value y.

Figure 3: The MCU. Creating the neuron output involves introducing the input vector
[x1, . . . , xn] to the MCU, which divides and assigns these inputs into several low-dimension
sub-cubes. The weight probabilities of each sub-cube are calculated using formula (1). For
each sub-cube, the calculated probability is multiplied by its corresponding weight, then
they are added together and averaged using a normalized average. The activation’s output
is sent to the activation function (g), which computes the neuron’s output value y.

3.3. The ELM algorithm

Huang et al. (2006a) utilized an incremental construction method to the-
oretically prove that SLNNs with randomized hidden weights and thresholds

12

are universal approximators. The mathematical model describing an SLNN
which can be trained using ELM is shown in equation 4. The transfer function

is denoted with g while x =

x1,1 . . . x1,n
... . . .

...
xN,1 . . . xN,n

N×n

∈ RN×n is the input ma-

trix, wl =

w
l
1,1 . . . wl

1,h
... . . .

...
wl

n,1 . . . wl
n,h

n×h

∈ Rn×h is the hidden layer weights matrix

and θ = [θ1 . . . θh] ∈ Rh is the vector containing the hidden layer thresholds.
The l superscript defines the low-order unit type, n is the number of neuron
inputs, h denotes the number of hidden layer units, and N is the number of

input patterns. The matrix βl =

β
l
1,1 . . . βl

1,m
... . . .

...
βl
h,1 . . . βl

h,m

h×m

∈ Rh×m contains the

output layer weights with m being the number of output units. Finally, the

matrix T =

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m

N×m

contains the target values.

g

x1,1

...
x1,n

T w

l
1,1
...

wl
n,1

+ θ1

 . . . g

x1,1

...
x1,n

T w

l
1,h
...

wl
n,h

+ θh

... · · · ...

g

xN,1

...
xN,n

T w

l
1,1
...

wl
n,1

+ θ1

 . . . g

xN,1

...
xN,n

T w

l
1,h
...

wl
n,h

+ θh

N×h

·

β
l
1,1 . . . βl

1,m
... . . .

...
βl
h,1 . . . βl

h,m

h×m

=

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m

N×m

(4)

The ELM method is described in Algorithm 1. The algorithm begins with
the randomization of the hidden layer parameters (weights and thresholds)
in steps 1 and 2. The following line involves the construction of the hidden
layer output matrix H containing the output values of every training sample

13

introduced to the SLNN. The fourth step is the construction of a matrix
carrying the target output values. The final line computes the output layer
weights matrix by multiplying the Moore-Penrose pseudo-inverse of H with
the target output matrix T .

Algorithm 1 : ELM

1: wl =

w
l
1,1 . . . wl

1,h
... . . .

...
wl

n,1 . . . wl
n,h

n×h

2: θ = [θ1, . . . , θh]

3: H =

g

x1,1

...
x1,n

T w

l
1,1
...

wl
n,1

+ θ1

 . . . g

x1,1

...
x1,n

T w

l
1,h
...

wl
n,h

+ θh

... · · · ...

g

xN,1

...
xN,n

T w

l
1,1
...

wl
n,1

+ θ1

 . . . g

xN,1

...
xN,n

T w

l
1,h
...

wl
n,h

+ θh

N×h

4: T =

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m

N×m

5: βl = H†T

3.4. The MCU-ELM algorithm

The MCU-ELM method is an extension of the ELM algorithm for SLNNs
containing the MCUs defined by Gurney (1989) in all their layers. The
mathematical model defining an MCU SLNN, which can be trained with the
MCU-ELM algorithm, is defined in formula 5. P denotes the MCU probabil-
ity function and g defines the transfer function. The matrix containing the
MCU activations is defined with amc ∈ RN×h =

14

amc
1,1

x1,1

...
x1,n

T

,

 wmc
0,1
...

wmc
ph−1,1

 . . . amc

1,h

x1,1

...
x1,n

T

,

 wmc
0,h
...

wmc
ph−1,h

... · · · ...

amc
N,1

xN,1

...
xN,n

T

,

 wmc
0,1
...

wmc
ph−1,1

 . . . amc

N,h

x1,1

...
x1,n

T

,

 wmc
0,h
...

wmc
ph−1,h

N×h

.

Inside the amc matrix, x =

x1,1 . . . x1,n
... . . .

...
xN,1 . . . xN,n

N×n

∈ RN×n is the input matrix

and wmc =

 wmc
0,1 . . . wmc

0,h
... . . .

...
wmc

ph−1,1 . . . wmc
ph−1,h

ph×h

∈ Rph×h is the hidden layer weights

matrix. Themc superscript defines the MCU type, n is the number of neuron
inputs, h denotes the number of hidden layer units, N is the number of input
patterns, ph is the hidden layer weights number, and po denotes the number
of output layer weights.

The matrix βmc =

 βmc
0,1 . . . βmc

0,m
... . . .

...
βmc
po−1,1 . . . βmc

po−1,m

po×m

∈ Rpo×m contains the

output layer weights with m being the number of output units. Finally, the

matrix T =

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m

N×m

∈ RN×m contains the target values.

P1,0

(
g(amc

1,1), . . . , g(a
mc
1,h)

)
. . . P1,po−1

(
g(amc

1,1), . . . , g(a
mc
1,h)

)
... · · ·

...

PN,0

(
g(amc

N,1), . . . , g(a
mc
N,h)

)
. . . PN,po−1

(
g(amc

N,1), . . . , g(a
mc
N,h)

)

N×po

·

 βmc
0,1 . . . βmc

0,m
... . . .

...
βmc
po−1,1 . . . βmc

po−1,m

po×m

=

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m

N×m

(5)

The MCU-ELM method is described in Algorithm 2. The algorithm

15

begins with the randomization of the hidden layer weights in step 1. The next
line involves the construction of the hidden layer output matrix H containing
the output values of every training sample introduced to the SLNN. The
third step is the construction of a matrix carrying the target output values.
The final line computes the output layer weights matrix by multiplying the
Moore-Penrose pseudo-inverse of H with the target output matrix T .

Algorithm 2 :MCU-ELM

1: wmc =

 wmc
0,1 . . . wmc

0,h
... . . .

...
wmc

ph−1,1 . . . wc
ph−1,h

n×h

2: H =

 P1,0

(
g(amc

1,1), . . . , g(a
mc
1,h)

)
. . . P1,po−1

(
g(amc

1,1), . . . , g(a
mc
1,h)

)
... · · · ...

PN,0

(
g(amc

N,1), . . . , g(a
mc
N,h)

)
. . . PN,po−1

(
g(amc

N,1), . . . , g(a
mc
N,h)

)

N×po

3: T =

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m

N×m

4: βmc = H†T

3.5. The GA

The GA is a method inspired by the Darwinian theory of biological evolu-
tion developed by Holland (1975) and his colleagues. The main idea behind
the creation of GAs is natural selection, where stronger species have more
chances to pass their genetic material (genes) to their offspring through re-
production. In succeeding generations, stronger (fitter) species dominate the
population and eliminate the weaker ones. During this evolution process,
alternation in a few genes may occur, giving additional advantage to the
produced offspring (Konak et al., 2006).

GAs are used for solving optimization problems. The structure of a
generic GA can be seen in Algorithm 3. In a GA, one possible solution
is represented by a chromosome (individual) constituted by genes. Each
gene may control more than one chromosome feature, and each possible so-
lution is mapped to an individual using an encoding procedure. The original
GA implementation utilized the binary encoding mechanism, where a binary
digit represented each gene. Other encoding mechanisms include real value

16

encoding, where each gene is mapped as a real number, and Gray encoding.
The latter has a binary representation, and adjacent integers differ only by
one binary digit (Whitley, 2001). The GA begins in step 1 by creating the
initial population, usually a set of randomly created possible solutions with
Popno size.

Algorithm 3 : GA

1: Population← create(Popno)
2: loop
3: Populationevaluate = evaluate(Population)
4: if (criterionstop = true) or (solutionbest = true) then
5: solutionbest ← best(Populationevaluate)
6: return solutionbest

7: end if
8: Populationselect ← select(Populationevaluate)
9: Populationcrossover ← crossover(Populationselect)

10: Population← mutation(Populationcrossover)
11: end loop

After creating the initial population, the evolutionary process begins.
It is an iterative process where each iteration (termed generation) utilizes
the evaluation, selection, crossover (recombination), and mutation operators.
The evaluation operator assesses the individuals according to a fitness func-
tion (step 3). Step 4 checks if the stopping criteria have been met or the best
solution has been found. If the condition is satisfied, the best solution from
the current population is selected (step 5) and returned to the user (step 6).
Otherwise, the evolution process continues for another cycle (Konak et al.,
2006).

17

Figure 4: The roulette wheel selection. Each chromosome has a selection percentage
assigned proportionally to its fitness value in the roulette wheel selection process. This
graph displays four chromosomes, with 8%, 31%, 24%, and 37% selection probabilities
assigned accordingly. It is shown that the fourth chromosome has the highest probability
(37%) for selection.

The selection operator (step 8) utilizes a roulette wheel mechanism that
assigns selection probabilities to the chromosomes according to their fitness.
Individuals with higher fitness values are assigned a larger percentage than
those with low-fitness values, making them more likely to be selected for cre-
ating the next generation. Low-fitness chromosomes are not excluded from
the selection process with the purpose of keeping the population diverse.
The roulette wheel mechanism with four individuals is visualized in Fig. 4.
Other selection mechanisms include rank selection, and local selection Mir-
jalili (2019).

The reproduction process (step 9) uses the one-point crossover opera-
tor, which utilizes the mutual exchange of genetic information between two
selected parents at a random crossover point. The reproduction process is vi-
sualized in Fig. 5 and produces two offspring. The crossover operator searches
the solution locally in the search space. Other recombination mechanisms
include multi-point and masked crossover operators Mirjalili (2019).

18

Figure 5: The one-point crossover operator. Using a random crossover point, the one-point
crossover operator produces two offspring by mutually exchanging genetic information
between two parent chromosomes.

The mutation operator is used for exploring unexplored areas of the search
space. It randomly changes the information in one or a few genes in offspring
chromosomes. The reason for keeping the mutation rate low is that a high
number of mutations would convert the GA to a random search algorithm, a
primitive optimization method. The bit mutation operator (used in binary
encoding) is depicted in Fig. 6 where a randomly chosen gene has its value
changed from 1 to 0 Mirjalili (2019).

Figure 6: Bit mutation. This figure visualizes bit mutation on the 2th bit where its value
changes from 1 to 0.

4. The EHO-ELM algorithm

The EHO-ELM algorithm is a hybrid approach combining the MCU-ELM
algorithm presented in section 3.4 with a modified GA, which evolves an ini-
tial population of randomly created MCU SLNNs. The evolution process
aims to create a more optimal network with a better generalization ability in

19

specific regression and classification problems. The optimization process of
the GA is twofold. It optimizes the hidden layer weights of MCUs and can
find an optimal combination of sub-cubes for each neuron of the SLNN, in-
cluding the output layer(s). One of the main goals of EHO-ELM was to retain
the simplicity of the original ELM by making all user-defined GA parameters
self-adaptive. The structure of EHO-ELM is described in Algorithm 4.

The algorithm begins by creating the initial population (step 1). Each
chromosome contains the hidden layer weights and the MCU structure for all
neurons of a randomly created SLNN. Each MCU is encoded as a gene, and
the size of each randomly created sub-cube unit for each gene varies from 2
to 25 weights. The population size (Popno) is given automatically by using
formula 6, which takes into consideration the number of hidden neurons (h).

Popno =

{
50, 2h > 50

2h, 0 > 2h ≤ 50
(6)

Step 2 begins the evolution process. Step 3 trains the networks using
MCU-ELM and evaluates them according to a fitness criterion. The classifi-
cation accuracy (acc) depicted in equation 7 was selected as a fitness criterion
for classification problems. In this formula, k is the number of folds, and pat
is the total number of input patterns. The err variable denotes the number
of erroneously classified patterns for the current fold.

acc =
1

k

k∑
i=1

(
1− err

pat

)
. (7)

The mean square error (MSE) defined in equation 8 was selected as a
fitness function for regression problems. In this formula, k is the number of
folds, and pat is the total number of input patterns. The symbols tji and yji
specify the j target network output value and the j network output value for
fold i.

MSE =
1

kpat

k∑
i=1

(pat∑
j=1

(tji − yji)
2
)

(8)

The evaluation process gives a higher score to SLNNs with the highest acc
values and SLNNs with the lowest MSE values. In step 4, the best solution
is selected.

20

Algorithm 4 : EHO-ELM

1: Population← create(Popno)
2: loop
3: Populationevaluate = evaluate(Population)
4: solutionbest ← best(Populationevaluate)
5: if solutionbest is unchanged for 5 generations then
6: return solutionbest

7: end if
8: Populationselect ← select(Populationevaluate

2
)

9: Populationcrossover ← crossover(Populationselect)
10: Population← mutation(Populationcrossover)
11: end loop

If the best solution remains unchanged for five generations, the algorithm
stops and returns the evolved network structure (steps 5-7). If this con-
dition is not satisfied, the evolution process continues in step 8 with the
selection mechanism, which selects 50% of the population with the highest
fitness scores for the reproduction process (step 9). The reproduction pro-
cess utilizes a custom crossover operator inspired by the uniform crossover.
In the uniform crossover, each gene is selected from either parent using equal
probability Syswerda et al. (1989). Similarly, in the EHO-ELM crossover
operator, sub-cube units are mutually exchanged between two parent genes
using equal probability between each gene’s sub-cube. The resulting offspring
chromosomes might have different gene input sizes than the parent ones since
there is a mutual exchange of sub-cubes that might have different sizes. Due
to this reason, an additional procedure adjusting the resulting offspring’s
chromosomes must be added. If the resulting child gene has more inputs,
it randomly removes sub-cubes until it becomes equal or less to the parent
gene size. If the child gene has a smaller number of inputs and the input size
difference of the child gene from the parent gene is higher than the maximum
allowed sub-cube size, it randomly creates a sub-cube unit placed in a ran-
dom position inside the MCU. This process is repeated until the difference
between the number of inputs in the child and the parent gene is equal or
less to the maximum allowed size of the sub-cube unit. Then, a sub-cube
unit that has input size, the size of this difference, is randomly created and
placed in a random position inside the child gene. It should be noted that
when sub-cubes for hidden MCUs are created, there is also a random creation

21

of the proper weights. Using this procedure, the input size of the offspring
genes stays consistent. An example of the EHO-ELM crossover operator is
depicted in Fig 7.

The mutation operator randomly chooses a small number of hidden layer
neurons and changes the weight values of one randomly chosen sub-cube from
each of these neurons. The mutation operation is self-adaptive (formula 9)
and exploits the fitness value of the best SLNN found at each generation. If
the evolution process has just begun (generation = 1) or a better network
has been found ((generation > 1) ∧ (fitnesscurrent > fitnessprevious)), the
mutation rate (µrate) is set at 10%. Suppose the reproduction process has
not created a better child network. In that case, the mutation rate gradually
increases by 20% (µrate = µrate + 20%) until it reaches a maximum value of
50% (µrate = 50%).

µrate =

µrate = 10%, (generation = 1) ∨ ((generation > 1)

∧(fitnesscurrent > fitnessprevious))

µrate = µrate + 20%, f itnesscurrent ≤ fitnessprevious

µrate = 50%, µrate ≥ 50%

(9)

22

Figure 7: The EHO-ELM crossover operator. This figure visualizes the crossover operation
between two parent chromosome genes (green and red). Since the gene contain randomly
created MCU structures, where the sub-cube size varies from 1 to 5, they may have different
lengths. The recombination is done with a mutual exchange of sub-cube units between two
parent genes using equal probability. The reproduction process may result in the creation
of offspring with different inputs. Due to this reason, an extra adjustment procedure is
added, which removes or creates the necessary sub-cube units for the resulting offspring
genes to have the correct input size. The created sub-cubes are depicted with a blue color.

5. Experimental results

The EHO-ELM algorithm was compared with 14 machine learning meth-
ods in 12 classification and six regression real-world datasets. All the datasets
were taken from the University of California, Irvine (UCI) machine learning
repository (Dua & Graff, 2017). In all datasets, the EHO-ELM algorithm
achieved the best generalization performance in a test set containing un-
known data for both problem types. The statistical significance of these
results was verified using the Wilcoxon sign-rank test.

23

5.1. Dataset characteristics

The characteristics of the classification datasets are summarized in Ta-
ble 1. The experimental part utilized binary and multi-class classification
problems.

Table 1: Attributes of the Classification Datasets

Dataset Inputs Outputs Entries

Balance Scale 4 3 625
Blood Transfusion Service Center 4 2 748
EEG Eye State 14 2 14980
Glass 9 7 214
HIV-1 Protease Cleavage 8 2 746
HTRU2 8 2 17898
Indoor User Movement Prediction
From RSS Data

4 2 13197

Leaf 14 36 340
Maternal Health Risk 6 3 1014
Page Blocks 10 5 5473
Vertebral Column 6 2 310
Yeast 8 10 1484

The first data collection is “Balance Scale”, which contains four input
features and is created for modeling experimental psychological results. The
“Blood Transfusion Service Center” dataset contains four input features re-
ceived from the Blood Transfusion Service Center in Hsin-Chu city in Taiwan
Yeh et al. (2009). The “EEG Eye State” data collection includes 14 input
features received from one continuous electroencephalogram (EEG) measure-
ment using the headset by EMOTIV and two outputs corresponding to the
open and closed eye states. The “Glass” dataset has six glass types received
from USA forensic science service. It contains ten input features, including
“ID Number” which has been removed. An octamers list and a binary flag are
in “HIV-1 Protease Cleavage”. Whether the HIV-1 protease will cleave in the
center determines the value of the flag (Rögnvaldsson et al., 2015). “HTRU2”
is a data collection containing entries that describe a sample of pulsar candi-
dates gathered at the high-time resolution universe (HTRU) survey (south)
(Lyon et al., 2016). “Indoor User Movement Prediction From RSS Data”
includes temporal information gathered from a wireless sensor network set

24

up in physical office settings (Bacciu et al., 2014). “Leaf” contains 36 leaf
specimens having 15 input attributes. In the experimental part of the current
research, the “specimen number” attribute has been removed (Silva et al.,
2013). “Maternal Health Risk” contains data gathered from various mater-
nal health care providers in Bangladesh’s rural areas. “Page Blocks” has
entries for categorizing each page layout block of a document that has been
identified by segmentation. “Vertebral Column” has six biomechanical fea-
tures for categorizing orthopedic patients into two classes, and “Yeast” data
collection is used for protein cellular localization site prediction tasks.

The characteristics of the regression datasets are summarized in Table 2.
The first is “Airfoil Self-Noise” data collection which contains entries from a
series of tests on 2D and 3D airfoil blade sections. The tests were performed
in an anechoic wind tunnel. ”Auto MPG” has entries for city-cycle fuel usage
and contains missing values. These entries were filled in with the average val-
ues derived from the available data. “Combined Cycle Power Plant” contains
data from a combined cycle power plant working on full load for six years
(Tüfekci, 2014; Kaya et al., 2012). “Concrete Compressive Strength” is a
data collection containing features that affect concrete compressive strength
(Yeh, 1998). “Real Estate Valuation” has historical market data regarding
real estate valuation (Yeh & Hsu, 2018), and “Yacht Hydrodynamics” con-
tains features for predicting the hydrodynamic performance of sailing yachts.

Table 2: Attributes of the Regression Datasets

Dataset Inputs Outputs Entries

Airfoil Self-Noise 5 1 1503
Auto MPG 8 1 398
Combined Cycle Power Plant 4 1 9568
Concrete Compressive Strength 8 1 1030
Real Estate Valuation 7 1 414
Yacht Hydrodynamics 6 1 308

5.2. Experimental setup

All data collections were normalized and divided into training/test sets
where 80% was used for training, and 20% was retained as a test set. In
the EHO-ELM and all BP-based approaches, the training set was further
divided into training/validation sets using 10-fold cross-validation. The MCU
hidden layer weights were randomly created from the uniform distribution

25

and were restricted inside the [−1, 1] interval. Similarly, the input vector
was normalized, and the input values did not exceed the [−1, 1] interval.
The sigmoid function was selected as the transfer function for the hidden
MCU units, and the number of hidden layer neurons was set to ten for all
neural network-based experiments. The neural network-based experiments
were repeated ten times with different randomized values for the hidden layer
weights and thresholds to avoid any bias due to the initialization of the hidden
parameters. Finally, the MCU-ELM method utilized one-dimension sub-
cubes, while the SVM implementation used a linear kernel. The experimental
setup parameters for the EHO-ELM are summarized in Table 3.

Table 3: EHO-ELM Experimental Setup Parameters

Parameter Name Symbol Values/Types

Multi-Cube Neuron Weights wmc [−1, 1]pno , pno ∈ N∗

Inputs x [−1, 1]n, n ∈ N∗

Activation Function g sigmoid
Hidden Layer Neurons No h 10
Folds No k 10
Experiment Sets expNo 10

5.3. Classification problems

EHO-ELM was compared with ten BP-based methods (BFGS, PBCG,
FRCG, PRCG, SCG, GD, GDM, GDMALR, OSS, and RPROP), the SVM
algorithm, and three ELM-based approaches (OS-ELM, original ELM, and
MCU-ELM) in 12 classification datasets. The experimental results are sum-
marized in Table 4, where it is evident that EHO-ELM managed to achieve
the highest classification accuracy in all datasets.

26

Table 4: Classification Problems Experimental Results

Datasets
Balance
Scale

Blood
Transfusion
Service
Center

EEG
Eye
State

Glass
HIV-1
Protease
Cleavage

HTRU-2

BFGS 43.83% 66.48% 51.95% 24.81% 54.47% 74.91%
PBCG 72.38% 59.32% 50% 20.93% 54.46% 68.8%
FRCG 69.77% 55.4% 49.87% 25.67% 54.07% 69.47%
PRCG 73.46% 58.64% 50.2% 24.93% 53.33% 68.1%
SCG 64.68% 65.82% 52.56% 32.28% 55.95% 79.66%
GD 38.39% 58.81% 52.24% 23.63% 50.73% 71.92%
GDM 37.78% 57.73% 52.33% 23.37% 49.85% 68.38%
GDMALR 46.53% 57% 51.58% 22.79% 54.44% 78.41%
OSS 45.54% 68.01% 51.21% 23.35% 56.3% 74.96%
RPROP 87.3% 73.28% 54.65% 52.35% 69.19% 96.49%
SVM 86.4% 74% 54.67% 60.47% 75.17% 97.65%
OS-ELM 88.96% 72.47% 57.94% 66.05% 74.7% 96.84%
ELM 88.96% 74.93% 58.22% 65.81% 74.97% 96.95%
MCU-ELM 90% 75.33% 59% 68.84% 75.3% 97.01%
EHO-ELM 90.62% 75.58% 69.34% 72.44% 77.08% 97.77%

Datasets

Indoor
User
Movement
Prediction
From
RSS
Data

Leaf
Maternal
Health
Risk

Page
Blocks

Vertebral
Column

Yeast

BFGS 53.9% 3.21% 38.32% 59.21% 58.81% 17.16%
PBCG 52.89% 6.68% 35.78% 31% 53.35% 18.05%
FRCG 51.92% 5.31% 35.59% 36.93% 50.34% 21.76%
PRCG 52.42% 6.93% 34.61% 38.53% 52.63% 20.59%
SCG 53.42% 5% 40% 46.8% 57.44% 23.48%
GD 52.13% 2.9% 34.82% 40.74% 53.73% 17.47%
GDM 52.89% 3.32% 35.47% 47.81% 53.37% 18.6%
GDMALR 53.03% 3.22% 38.32% 49.19% 55.52% 15.77%
OSS 53.77% 3.13% 37.7% 58.4% 59.08% 17.72%
RPROP 59.42% 26.44% 52.88% 89.04% 68.26% 31.61%
SVM 61.69% 38.24% 59.11% 91.87% 64.52% 56.57%
OS-ELM 64.7% 32.65% 64.73% 91.32% 80.16% 57.17%
ELM 64.47% 33.24% 64.53% 91.21% 78.39% 57.81%
MCU-ELM 64.95% 36.47% 65.47% 91.39% 78.87% 57.88%
EHO-ELM 69.39% 57.57% 66.5% 94.99% 81.89% 59.4%

27

The significance of these results was evaluated using the Wilcoxon signed-
ranked test, a non-parametric statistical hypothesis test used to compare the
locations of two populations by utilizing two matched samples or to assess the
location of a population based on a sample of data (Wilcoxon; Conover, 1999).
The outcome of the Wilcoxon signed-ranked test is a p-value, corresponding
to a probability that the two compared populations are the same. The output
from this statistical test between EHO-ELM and the 14 alternative methods
is summarized in Fig 8. In all cases, the p-value from these comparisons was
less than 5%, indicating that the results from EHO-ELM are statistically
significant.

Figure 8: Wilcoxon Signed-Rank Test. This figure visualizes the experimental results from
comparing EHO-ELM with 14 machine learning methods (BFGS, PBCG, FRCG, PRCG,
SCG, GD, GDM, GDMALR, OSS, RPROP, SVM, OS-ELM, ELM, and MCU-ELM) in 12
classification datasets. It is shown that in all cases, the p-value was below 5%, indicating
that the results from the comparison are statistically significant.

5.4. Regression problems

EHO-ELM was also compared with the same ten BP-based methods
(BFGS, PBCG, FRCG, PRCG, SCG, GD, GDM, GDMALR, OSS, and
RPROP), the SVM algorithm, and three ELM-based approaches (OS-ELM,
original ELM, and MCU-ELM) in six regression datasets. The experimental
results are summarized in Table 5, showing that EHO-ELM achieved the
lowest MSE in all datasets.

28

Table 5: Regression Problems Experimental Results

Datasets
Airfoil
Self-Noise

Auto
MPG

Combined
Cycle
Power
Plant

Concrete
Compressive
Strength

Real
Estate
Valuation

Yacht
Hydro-
dynamics

BFGS 0.001009 0.004076 0.000077 0.009913 0.004873 0.005284
PBCG 0.000886 0.004 0.000072 0.009746 0.004634 0.001548
FRCG 0.00091 0.003958 0.000072 0.010472 0.004706 0.00217
PRCG 0.000923 0.00413 0.000073 0.010999 0.004826 0.004055
SCG 0.000924 0.004032 0.000074 0.011631 0.004997 0.002518
GD 0.009912 0.014348 0.00561 0.033193 0.016024 0.031566
GDM 0.010161 0.013987 0.005975 0.033274 0.016757 0.033116
GDMALR 0.001052 0.008622 0.000125 0.021146 0.008427 0.008419
OSS 0.001216 0.004457 0.000097 0.011962 0.005264 0.003304
RPROP 0.000841 0.004311 0.000072 0.010924 0.005008 0.002244
SVM 0.001166 0.004692 0.000083 0.018107 0.005268 0.022118
OS-ELM 0.001042 0.00401 0.000074 0.016267 0.005092 0.011822
ELM 0.001032 0.004314 0.000074 0.015039 0.005196 0.011498
MCU-ELM 0.001013 0.004153 0.000073 0.013898 0.005015 0.010085
EHO-ELM 0.000503 0.003272 0.00007 0.006968 0.003846 0.000118

The significance of these results was evaluated using the Wilcoxon signed-
ranked test. The outcome from this statistical test between EHO-ELM and
the 14 alternative methods is summarized in Fig 9. In all cases, the p-value
from these comparisons was less than 5%, indicating that the results from
EHO-ELM are statistically significant.

29

Figure 9: Wilcoxon Signed-Rank Test. This figure visualizes the experimental results from
comparing EHO-ELM with 14 machine learning methods (BFGS, PBCG, FRCG, PRCG,
SCG, GD, GDM, GDMALR, OSS, RPROP, SVM, OS-ELM, ELM, and MCU-ELM) in six
classification datasets. It is shown that in all cases, the p-value was below 5%, indicating
that the results from the comparison are statistically significant.

6. Discussion

The experimental study in this article verified that the EHO-ELM algo-
rithm performs better than 14 machine-learning approaches in 12 datasets.
One interesting observation from the “EEG Eye State” dataset is that EHO-
ELM achieved 69.34% accuracy and outperformed the MCU-ELM method
by 10.34%, which was the second best with 59% accuracy. MCU-ELM uti-
lizes one-dimension sub-cubes and is unable to optimize the hidden layer
parameters. Although MCU-ELM is a faster method than EHO-ELM since
it trains only one neural network compared to EHO-ELM’s evolutionary pro-
cess, which trains many networks at each generation, its generalization ability
is inferior. A similar observation is shown in the “Leaf” dataset. The pro-
posed method achieved a 57.57% accuracy compared to the SVM method,
which was the second best with 38.04%, giving a 19.33% difference between
these two methods. The “Leaf” dataset is categorized as a multi-class prob-
lem since it contains features from 36 leaf specimens justifying the low ac-
curacy values achieved in this data collection from all methods. Similar ob-
servations were noted in the regression problems. Specifically in the “Yacht

30

Hydrodynamics” dataset, EHO-ELM achieved a 0.000118 MSE which is an
order less than the 0.001548 MSE of the PBCG method having the second
best generalization performance.

This article aims to present a method capable of automatically selecting
an optimal combination of sub-cubes for each MCU utilized in creating an
SLNN that can be trained with the MCU-ELM algorithm while retaining
its simplicity. Exhausting all possible combinations of sub-units cannot be
done quickly since the search space increases exponentially with every neuron
introduced to the network. Due to this reason, a custom GA was created
to find an optimal network and optimize the hidden layer parameters in an
acceptable time. All GA parameters are self-adaptive, thus retaining ELM’s
simplicity

One issue of EHO-ELM is that it is a computationally intensive method
because it requires training a series of SLNNs at each evolution cycle. The
adopted solution to this problem was the utilization of a multi-core system
for training in parallel the SLNNs at each generation.

7. Conclusion

The EHO-ELM algorithm utilized an evolutionary method to train a
series of SLNNs containing MCU units in both layers. The evolutionary
method was a custom-created GA able to estimate the number and dimen-
sions of each neuron’s sub-cubes and optimize the hidden layer parameters.
The evolution process finishes when the best network found remains the same
for five generations, and this network is selected as the most optimal.

The proposed method was evaluated in 12 datasets with 14 machine learn-
ing methods. EHO-ELM outperformed all the compared methods in classifi-
cation and regression problems by achieving the highest accuracy and lowest
MSE values accordingly. The experimental results’ significance was verified
using the Wilcoxon signed-rank test. EHO-ELM was compared with each
alternative method; in all cases, the p-value was less than 5% indicating that
the two methods are different.

Although the proposed method trains a series of SLNNs, it is not an
ensemble method because the best network found according to fitness is se-
lected at the end of the evolution process. Future work will focus on adapting
EHO-ELM to an ensemble method by creating and combining several models
for improving the accuracy in classification problems or reducing the MSE
in regression problems.

31

CRediT authorship contribution statement

Vasileios Christou: Conceptualization, Methodology, Software, Writ-
ing – original draft, Investigation, Resources. Alexandros T. Tzallas:
Visualization, Validation, Writing – review & editing, Supervision, Project
administration. Markos G. Tsipouras: Data curation, Validation, Writing
– review & editing, Supervision, Project administration. Nikolaos Gian-
nakeas: Formal analysis, Validation, Writing – review & editing, Supervi-
sion, Project administration.

Declaration of competing interest

The authors declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the work
reported in this paper.

Funding

We acknowledge support of this work by the project “MEGATRON”
(MIS 5047227) which is implemented under the Action “Reinforcement of
the Research and Innovation Infrastructure”, funded by the Operational Pro-
gramme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-
2020) and co-financed by Greece and the European Union (European Re-
gional Development Fund).

References

Albadr, M. A. A., Tiun, S., Ayob, M., & Al-Dhief, F. T. (2022). Particle
swarm optimization-based extreme learning machine for covid-19 detec-
tion. Cognitive Computation, (pp. 1–16).

Alexander, V., & Annamalai, P. (2016). An elitist genetic algorithm based
extreme learning machine. In Computational Intelligence, Cyber Security
and Computational Models (pp. 301–309). Springer.

Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained
engineering optimization problems: crow search algorithm. Computers &
structures , 169 , 1–12.

32

nikos
Highlight

Bacciu, D., Barsocchi, P., Chessa, S., Gallicchio, C., & Micheli, A. (2014). An
experimental characterization of reservoir computing in ambient assisted
living applications. Neural Computing and Applications , 24 , 1451–1464.

Bhat, A. U., Merchant, S. S., & Bhagwat, S. S. (2008). Prediction of melting
points of organic compounds using extreme learning machines. Industrial
& engineering chemistry research, 47 , 920–925.

Broyden, C. G. (1970a). The convergence of a class of double-rank mini-
mization algorithms: 1. general considerations. IMA Journal of Applied
Mathematics , 6 , 76–90.

Broyden, C. G. (1970b). The convergence of a class of double-rank mini-
mization algorithms: 2. the new algorithm. IMA journal of applied math-
ematics , 6 , 222–231.

Cai, Z., Gu, J., Luo, J., Zhang, Q., Chen, H., Pan, Z., Li, Y., & Li, C. (2019).
Evolving an optimal kernel extreme learning machine by using an enhanced
grey wolf optimization strategy. Expert Systems with Applications , 138 ,
112814.

Cao, J., Lin, Z., & Huang, G.-B. (2012). Self-adaptive evolutionary extreme
learning machine. Neural processing letters , 36 , 285–305.

Cao, L., Yue, Y., Zhang, Y., & Cai, Y. (2021). Improved crow search al-
gorithm optimized extreme learning machine based on classification algo-
rithm and application. Ieee Access , 9 , 20051–20066.

Cauchy, A. et al. (1847). Méthode générale pour la résolution des systemes
d’équations simultanées. Comp. Rend. Sci. Paris , 25 , 536–538.

Christou, V. (2023). Higher-order extreme learning machine. Unpublished.

Christou, V., Koritsoglou, K., Ntritsos, G., Tsoumanis, G., Tsipouras, M. G.,
Giannakeas, N., Glavas, E., & Tzallas, A. T. (2022). Heterogeneous hybrid
extreme learning machine for temperature sensor accuracy improvement.
Expert Systems with Applications , 203 , 117488.

Christou, V., Ntritsos, G., Tzallas, A. T., Tsipouras, M. G., & Giannakeas,
N. (2020). Self-adaptive hybrid extreme learning machine for heteroge-
neous neural networks. In 2020 International Joint Conference on Neural
Networks (IJCNN) (pp. 1–8). IEEE.

33

Christou, V., Tsipouras, M. G., Giannakeas, N., & Tzallas, A. T. (2018). Hy-
brid extreme learning machine approach for homogeneous neural networks.
Neurocomputing , 311 , 397–412.

Christou, V., Tsipouras, M. G., Giannakeas, N., Tzallas, A. T., & Brown,
G. (2019). Hybrid extreme learning machine approach for heterogeneous
neural networks. Neurocomputing , 361 , 137–150.

Conover, W. J. (1999). Practical nonparametric statistics volume 350. john
wiley & sons.

Dong, J., Wu, L., Liu, X., Li, Z., Gao, Y., Zhang, Y., & Yang, Q. (2020).
Estimation of daily dew point temperature by using bat algorithm opti-
mization based extreme learning machine. Applied Thermal Engineering ,
165 , 114569.

Dou, J., Ma, H., Zhang, Y., Wang, S., Ye, Y., Li, S., & Hu, L. (2022).
Extreme learning machine model for state-of-charge estimation of lithium-
ion battery using salp swarm algorithm. Journal of Energy Storage, 52 ,
104996.

Dua, D., & Graff, C. (2017). UCI machine learning repository. URL: http:
//archive.ics.uci.edu/ml.

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm
theory. In MHS’95. Proceedings of the sixth international symposium on
micro machine and human science (pp. 39–43). Ieee.

Endah, S. N., Widodo, A. P., Fariq, M. L., Nadianada, S. I., & Maulana, F.
(2017). Beyond back-propagation learning for diabetic detection: Conver-
gence comparison of gradient descent, momentum and adaptive learning
rate. In 2017 1st international conference on informatics and computa-
tional sciences (ICICoS) (pp. 189–194). IEEE.

Faris, H., Mirjalili, S., Aljarah, I., Mafarja, M., & Heidari, A. A. (2020). Salp
swarm algorithm: theory, literature review, and application in extreme
learning machines. Nature-inspired optimizers , (pp. 185–199).

Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their
properties. Cognitive science, 6 , 205–254.

34

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Fletcher, R. (1970). A new approach to variable metric algorithms. The
computer journal , 13 , 317–322.

Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate
gradients. The computer journal , 7 , 149–154.

Ginantra, N., Bhawika, G. W., Daengs, G. A., Panjaitan, P. D., Arifin,
M. A., Wanto, A., Amin, M., Okprana, H., Syafii, A., & Anwar, U. (2021).
Performance one-step secant training method for forecasting cases. In
Journal of Physics: Conference Series (p. 012032). IOP Publishing volume
1933.

Goldfarb, D. (1970). A family of variable-metric methods derived by varia-
tional means. Mathematics of computation, 24 , 23–26.

Gurney, K. N. (1989). Learning in networks of structured hypercubes . Ph.D.
thesis Brunel University London, UK.

Han, F., Yao, H.-F., & Ling, Q.-H. (2013). An improved evolutionary extreme
learning machine based on particle swarm optimization. Neurocomputing ,
116 , 87–93.

Heidari, A. A., Abbaspour, R. A., & Chen, H. (2019). Efficient boosted
grey wolf optimizers for global search and kernel extreme learning machine
training. Applied Soft Computing , 81 , 105521.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems . Uni-
versity of Michigan Press.

Huang, G., Song, S., Gupta, J. N., & Wu, C. (2014). Semi-supervised and un-
supervised extreme learning machines. IEEE transactions on cybernetics ,
44 , 2405–2417.

Huang, G.-B., Chen, L., Siew, C. K. et al. (2006a). Universal approximation
using incremental constructive feedforward networks with random hidden
nodes. IEEE Trans. Neural Networks , 17 , 879–892.

Huang, G.-B., Liang, N.-Y., Rong, H.-J., Saratchandran, P., & Sundararajan,
N. (2005). On-line sequential extreme learning machine. Computational
Intelligence, 2005 , 232–237.

35

Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2011). Extreme learning
machine for regression and multiclass classification. IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), 42 , 513–529.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine:
a new learning scheme of feedforward neural networks. In 2004 IEEE inter-
national joint conference on neural networks (IEEE Cat. No. 04CH37541)
(pp. 985–990). Ieee volume 2.

Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006b). Extreme learning machine:
theory and applications. Neurocomputing , 70 , 489–501.

Javed, K., Gouriveau, R., & Zerhouni, N. (2014). Sw-elm: A summation
wavelet extreme learning machine algorithm with a priori parameter ini-
tialization. Neurocomputing , 123 , 299–307.

Karimkashi, S., & Kishk, A. A. (2010). Invasive weed optimization and its
features in electromagnetics. IEEE transactions on antennas and propa-
gation, 58 , 1269–1278.

Kaya, H., Tüfekci, P., & Gürgen, F. S. (2012). Local and global learning
methods for predicting power of a combined gas & steam turbine. In
Proceedings of the international conference on emerging trends in computer
and electronics engineering ICETCEE (pp. 13–18).

Konak, A., Coit, D. W., & Smith, A. E. (2006). Multi-objective optimization
using genetic algorithms: A tutorial. Reliability engineering & system
safety , 91 , 992–1007.

Lyon, R. J., Stappers, B., Cooper, S., Brooke, J. M., & Knowles, J. D.
(2016). Fifty years of pulsar candidate selection: from simple filters to a
new principled real-time classification approach. Monthly Notices of the
Royal Astronomical Society , 459 , 1104–1123.

Mengcan, M., Xiaofang, C., & Yongfang, X. (2021). Constrained voting
extreme learning machine and its application. Journal of Systems Engi-
neering and Electronics , 32 , 209–219.

Meza, J. C. (2010). Steepest descent. Wiley Interdisciplinary Reviews: Com-
putational Statistics , 2 , 719–722.

36

Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., & Lendasse, A.
(2009). Op-elm: optimally pruned extreme learning machine. IEEE trans-
actions on neural networks , 21 , 158–162.

Miche, Y., Van Heeswijk, M., Bas, P., Simula, O., & Lendasse, A. (2011).
Trop-elm: a double-regularized elm using lars and tikhonov regularization.
Neurocomputing , 74 , 2413–2421.

Mirjalili, S. (2019). Evolutionary algorithms and neural networks. In Studies
in computational intelligence. Springer volume 780.

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., & Mir-
jalili, S. M. (2017). Salp swarm algorithm: A bio-inspired optimizer for
engineering design problems. Advances in engineering software, 114 , 163–
191.

Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances
in engineering software, 95 , 51–67.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Ad-
vances in engineering software, 69 , 46–61.

Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & Aljarah, I. (2018).
Grasshopper optimization algorithm for multi-objective optimization prob-
lems. Applied Intelligence, 48 , 805–820.

Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast super-
vised learning. Neural networks , 6 , 525–533.

Moscato, P. et al. (1989). On evolution, search, optimization, genetic algo-
rithms and martial arts: Towards memetic algorithms. Caltech concurrent
computation program, C3P Report , 826 , 37.

Polak, E., & Ribiere, G. (1969). Note sur la convergence de méthodes
de directions conjuguées. Revue française d’informatique et de recherche
opérationnelle. Série rouge, 3 , 35–43.

Polyak, B. T. (1964). Some methods of speeding up the convergence of itera-
tion methods. Ussr computational mathematics and mathematical physics ,
4 , 1–17.

37

Powell, M. J. D. (1977). Restart procedures for the conjugate gradient
method. Mathematical programming , 12 , 241–254.

Rathod, N., & Wankhade, S. (2022). Optimizing neural network based on
cuckoo search and invasive weed optimization using extreme learning ma-
chine approach. Neuroscience Informatics , (p. 100075).

Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster
backpropagation learning: The rprop algorithm. In IEEE international
conference on neural networks (pp. 586–591). IEEE.

Rögnvaldsson, T., You, L., & Garwicz, D. (2015). State of the art prediction
of hiv-1 protease cleavage sites. Bioinformatics , 31 , 1204–1210.

Rumelhart, D. E., Durbin, R., Golden, R., & Chauvin, Y. (1995). Backprop-
agation: The basic theory. Backpropagation: Theory, architectures and
applications , (pp. 1–34).

Rumelhart, D. E., Hinton, G. E., McClelland, J. L. et al. (1986a). A general
framework for parallel distributed processing. Parallel distributed process-
ing: Explorations in the microstructure of cognition, 1 , 26.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986b). Learning rep-
resentations by back-propagating errors. nature, 323 , 533–536.

Scales, L. (1985). Introduction to non-linear optimization. Springer-Verlag.

Shanno, D. F. (1970). Conditioning of quasi-newton methods for function
minimization. Mathematics of computation, 24 , 647–656.

Shariati, M., Mafipour, M. S., Ghahremani, B., Azarhomayun, F., Ahmadi,
M., Trung, N. T., & Shariati, A. (2022). A novel hybrid extreme learn-
ing machine–grey wolf optimizer (elm-gwo) model to predict compressive
strength of concrete with partial replacements for cement. Engineering
with Computers , (pp. 1–23).

Shin, Y., & Ghosh, J. (1991). The pi-sigma network: An efficient higher-order
neural network for pattern classification and function approximation. In
IJCNN-91-Seattle international joint conference on neural networks (pp.
13–18). IEEE volume 1.

38

Silva, P. F., Marcal, A. R., & da Silva, R. M. A. (2013). Evaluation of
features for leaf discrimination. In Image Analysis and Recognition: 10th
International Conference, ICIAR 2013, Póvoa do Varzim, Portugal, June
26-28, 2013. Proceedings 10 (pp. 197–204). Springer.

Similä, T., & Tikka, J. (2005). Multiresponse sparse regression with appli-
cation to multidimensional scaling. In Artificial Neural Networks: Formal
Models and Their Applications–ICANN 2005: 15th International Confer-
ence, Warsaw, Poland, September 11-15, 2005. Proceedings, Part II 15
(pp. 97–102). Springer.

Storn, R. (1996). On the usage of differential evolution for function opti-
mization. In Proceedings of north american fuzzy information processing
(pp. 519–523). Ieee.

Storn, R., & Price, K. (1997). Differential evolution-a simple and efficient
heuristic for global optimization over continuous spaces. Journal of global
optimization, 11 , 341.

Syswerda, G. et al. (1989). Uniform crossover in genetic algorithms. In ICGA
(pp. 2–9). volume 3.

Tüfekci, P. (2014). Prediction of full load electrical power output of a base
load operated combined cycle power plant using machine learning methods.
International Journal of Electrical Power & Energy Systems , 60 , 126–140.

Wang, W., Liu, Y., Song, F., & Wang, Y. (2022). Color trend prediction
method based on genetic algorithm and extreme learning machine. Color
Research & Application, 47 , 942–952.

Werbos, P. (1974). Beyond regression: New tools for prediction and analysis
in the behavioral sciences. PhD thesis, Committee on Applied Mathematics,
Harvard University, Cambridge, MA, .

Whitley, D. (2001). An overview of evolutionary algorithms: practical issues
and common pitfalls. Information and software technology , 43 , 817–831.

Wilcoxon, F. (). Individual comparisons by ranking methods, biometrics
bulletin 1 (1945) 80–83. URL: http://www.jstor.org/stable/3001968.doi ,
10 , 3001968.

39

Yang, W., Xia, K., Fan, S., Wang, L., Li, T., Zhang, J., & Feng, Y. (2022).
A multi-strategy whale optimization algorithm and its application. Engi-
neering Applications of Artificial Intelligence, 108 , 104558.

Yang, X.-S. (2010). A new metaheuristic bat-inspired algorithm. Nature
inspired cooperative strategies for optimization (NICSO 2010), (pp. 65–
74).

Yang, X.-S., & Deb, S. (2009). Cuckoo search via lévy flights. In 2009
World congress on nature & biologically inspired computing (NaBIC) (pp.
210–214). Ieee.

Yeh, I.-C. (1998). Modeling of strength of high-performance concrete using
artificial neural networks. Cement and Concrete research, 28 , 1797–1808.

Yeh, I.-C., & Hsu, T.-K. (2018). Building real estate valuation models with
comparative approach through case-based reasoning. Applied Soft Com-
puting , 65 , 260–271.

Yeh, I.-C., Yang, K.-J., & Ting, T.-M. (2009). Knowledge discovery on rfm
model using bernoulli sequence. Expert Systems with Applications , 36 ,
5866–5871.

Yu, C., Chen, M., Cheng, K., Zhao, X., Ma, C., Kuang, F., & Chen, H.
(2021). Sgoa: annealing-behaved grasshopper optimizer for global tasks.
Engineering with Computers , (pp. 1–28).

Zahir, N., & Mahdi, H. (2015). Snow depth estimation using time series
passive microwave imagery via genetically support vector regression (case
study urmia lake basin). The International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences , 40 , 555.

Zhang, Y., Wu, J., Cai, Z., Zhang, P., & Chen, L. (2016). Memetic extreme
learning machine. Pattern Recognition, 58 , 135–148.

Zhu, Q.-Y., Qin, A. K., Suganthan, P. N., & Huang, G.-B. (2005). Evolu-
tionary extreme learning machine. Pattern recognition, 38 , 1759–1763.

40

	Introduction
	Literature review
	Related work
	The cubic unit
	The multi-cube unit
	The ELM algorithm
	The MCU-ELM algorithm
	The GA

	The EHO-ELM algorithm
	Experimental results
	Dataset characteristics
	Experimental setup
	Classification problems
	Regression problems

	Discussion
	Conclusion

