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Abstract

Parkinson’s disease is a neurodegenerative disease that primarily impacts
the patient’s motor system. A large percentage of the patients at the early
stages of the disease develop vocal disorders. This finding is utilized from
telediagnosis systems aimed at early disease detection. The current study
uses a dataset containing voice recordings from 252 subjects. These record-
ings have undergone a feature extraction, a pre-processing, and a feature
selection procedure before being sent to a neural network hybrid algorithm
to classify them into two categories (normal and abnormal). The hybrid algo-
rithm creates and trains, using higher order extreme learning machine (HO-
ELM) algorithm, a set of higher-order multi-cube unit (MCU) single-layer
neural networks (SLNNs). The ELM algorithm gained popularity mainly
due to its simplicity and fast training speed. ELM is used with traditional
low-order neuron types where each input vector element is multiplied with a
corresponding weight vector value. This neuron type is restricted to solving
linear separable problems. Non-linear separable ones would require using a
neural network or more advanced neuron types like the higher-order unit.
The latter has a weight vector containing more entries than the input vector.
A higher-order unit type is the MCU which utilizes a series of hyper-cubes
where each site of these cubes corresponds to a weight value. These trained
MCU SLNNs are evolved using a modified genetic algorithm (GA), and the
most optimal one is selected for the classification process. The GA is self-
adaptive and can determine the optimal number and size of each sub-cube
forming every MCU of the network (hidden and output layers). Also, it can
tune the hidden layer weights. The algorithm’s accuracy was tested with 15
machine-learning methods and achieved the highest accuracy percentage. Fi-
nally, the statistical significance of the experimental results was tested using
the Wilcoxon signed-rank test.

Keywords:
extreme learning machine, higher-order neuron, genetic algorithm,
multi-cube neuron, Parkinson’s disease
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1. Introduction

Parkinson’s disease (PD) is one of the most common neurodegenerative
diseases affecting many patients’ speech, posture, and gait. It was initially
described by Dr. James Parkinson in 1819 in his work “An Essay on the
Shaking Palsy”, which was reprinted in 2002 (Parkinson, 2002). PD causes
nerve cell degeneration in a small brain area named substantia nigra. The
affected cells lose dopamine, a chemical substance aiding the communica-
tion of messages or signals from the brain to various human body regions.
The patient faces movement issues when low dopamine levels compromise
the brain’s ability to transmit messages. The nerve cell degeneration causes
tremors and stiffness in the patient’s limbs as well as issues with gait and
balance. Besides pathological problems, the patient might face psychological
issues like anxiety and depression. PD is a long-lasting disease affecting ap-
proximately 10 million people worldwide, significantly reducing the patient’s
quality of life at later stages (Marie, 2020; Factor & Weiner, 2007).

Most patients with PD are elderly (over 60 years old) (Van Den Eeden
et al., 2003) and have an extended life span, with their treatment usually
requiring pharmacological or surgical means. Due to the nature of this dis-
ease, remote diagnosing and monitoring systems can be a powerful tool for
the healthcare system. Such systems can detect early stages of the disease
and reduce the number of patient visits to the hospitals, which in turn re-
duces the workload of healthcare specialists (Van Den Eeden et al., 2003;
Erdogdu Sakar et al., 2017; Little et al., 2008; Sakar et al., 2019).

PD remote diagnosis and monitoring systems estimate the progression
of the disease by using non-invasive methods. One critical symptom shown
in a significantly large percentage of patients is vocal issues. Due to this
observation, many telemedicine systems focus on vocal disorders (Gürüler,
2017; Peker, 2016; Sakar et al., 2013). These systems utilize different speech
signal processing algorithms for extracting features which are then sent as
input into various machine learning algorithms for creating decision support
systems (Sakar et al., 2019).

The current study utilizes the “Parkinson’s disease classification” dataset
(Sakar et al., 2018), which contains 753 extracted features from the voice
recordings of 188 subjects having PD and 64 normal ones. The dataset
contained one additional column containing each participant’s identification
(ID) number, which has been removed. These features underwent a feature
selection process, and the 50 best ones have been selected using the minimum
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redundancy maximum relevance (MRMR) algorithm. The MRMR algorithm
selects a sub-feature set containing the maximum correlation with the class
(output) and the minimum correlation between the selected features (Ding &
Peng, 2005). This subset is entered as input to the evolutionary higher-order
extreme learning machine algorithm (EHO-ELM) proposed by Christou et al.
(2023), which is responsible for the classification task of the subjects into two
categories (PD and non-PD patients).

EHO-ELM is a hybrid approach combining the higher-order extreme
learning machine algorithm (HO-ELM) with a modified self-adaptive ver-
sion of a genetic algorithm (GA) (Holland, 1975). HO-ELM by Christou
(2023) extends the traditional extreme learning machine (ELM) algorithm
developed initially by Huang et al. (2004, 2006) for single-layer neural net-
works (SLNNs) to SLNNs containing the higher-order neurons proposed by
Gurney (1989) in their hidden and output layers. ELM can train an SLNN
by treating it as a system of linear equations where the hidden layer weights
and thresholds are randomized, and the output layer weights are analytically
calculated with the help of the Moore-Penrose pseudo-inverse (Huang et al.,
2004, 2006).

The advantages of ELM over other learning methods include very fast
training speed since it is not an iterative method like gradient-based methods
and simplicity since it doesn’t contain any user-defined parameters affecting
the training process (e.g., the learning rate in gradient-based approaches).
Moreover, it doesn’t fall into local minima. Besides the advantages mentioned
above, it contains some significant disadvantages. One of them is the random
selection of the hidden layer weights and thresholds, which might lead to
poor generalization performance of the network. Another disadvantage of
ELM is that the original algorithm works with traditional semi-linear (low-
order) neuron types restricted to linear separable problems. Semi-linear units
multiply each neuron input with a corresponding weight, and they are added
together with an optional threshold before being sent to a transfer (output)
function, which produces the neuron’s output. Gurney’s cubic (higher-order)
units solve this problem by mapping the inputs to a hyper-cube where each
cube site corresponds to a weight. This way, an n−input neuron contains
2n weights with n ∈ N. Although these neuron types can solve non-linear
separable problems, they face scaling issues since the number of weights
increases exponentially. Due to this fact, Gurney proposed the multi-cube
unit (MCU), which breaks down one hypercube into smaller sub-cubes having
different dimensions. HO-ELM networks containing MCU in both their layers
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are termed MCU-ELM networks and are used in the creation of the EHO-
ELM algorithm (Huang et al., 2004, 2006; Gurney, 1989; Christou et al.,
2023).

The motivation behind the creation of EHO-ELM was twofold. The first
reason was to solve the random initialization problem of the hidden weights
and thresholds. The second reason was to find an optimal combination of
sub-cube units for the hidden and output layer neurons. These issues were
dealt with using a modified self-adaptive GA, which creates and trains a
series of MCU SLNNs and evolves them at each algorithm iteration into
SLNNs with better generalization performance. At the end of the evolution
process, the algorithm selects the most optimal one for the classification
process of the “Parkinson’s disease classification” dataset. EHO-ELM retains
ELM’s simplicity by making all GA’s parameters self-adaptive (Christou,
2023). EHO-ELM was utilized because the evolutionary process created more
optimal SLNNs than ELM and MCU-ELM and overperformed 15 machine
learning methods, as seen in the experimental part of this article.

The article is structured into seven main sections starting with the “In-
troduction”, where the problem’s description and motivation are presented
along with a brief description of the proposed system’s architecture. The
following section is the “Literature review”, which explores existing research
methods that show similarities to the proposed approach. The third section
is “Related work”, divided into six sub-sections analyzing the structure of
cubic and MCU units, traditional ELM algorithm, MCU-ELM, the architec-
ture of a GA, and EHO-ELM. The fourth section explains the architecture
of the proposed system, while the next section presents the experimental
results, followed by a “Discussion” and “Conclusion” section.

2. Literature review

Many methods have been proposed for PD remote diagnosis and moni-
toring. Some of them utilize vocal data for this task. Narendra et al. (2021)
proposed two architectures (a classical pipeline method and an end-to-end
system) for automatic PD detection from voice data between healthy and PD
patients. The classical pipeline method utilized baseline and glottal features
to train a support vector machine (SVM) algorithm. The end-to-end system
used raw speech and voice source waveforms and utilized two glottal inverse
filtering methods (iterative adaptive inverse filtering and quasi-closed phase
analysis). Moreover, it applied the zero-frequency filtering approach. The

5



classification task was done with the help of a convolutional neural network
(CNN) which utilized a multi-layer perceptron (MLP). Xue et al. (2023) pro-
posed a local dynamic feature selection fusion approach for PD diagnosis and
severity prediction. Initially, it applies the maximal information coefficient
to remove features with low relevance. Then, it utilizes a feature selection
stage based on self-organizing map network clustering to create the input
vector for both the Gaussian process classifier, responsible for the diagno-
sis task, and the random forest (RF) regressor, responsible for the severity
prediction task. Despotovic et al. (2020) created a PD diagnosis and progres-
sion estimation system from voice recordings. The data undergo a feature
selection stage using the automatic relevance determination algorithm and
are introduced as an input vector to a Gaussian process classifier, producing
the system’s output.

Numerous methods utilize neural networks for the classification task.
Garćıa-Ordás et al. (2023) created a deep-learning model for detecting and
estimating PD severity. It utilizes a mixed MLP with classification and re-
gression capabilities trained using patients’ voice recordings. The detection
task involves distinguishing between two categories (severe and non-severe)
while the disease’s estimation uses the unified PD rating scale (UPDRS).
The MLP adopted a trained auto-encoder for removing features containing
non-relevant information, which would reduce its generalization performance.
Asmae et al. (2020) utilized an artificial neural network (ANN) for PD de-
tection, which contained two hidden layers. The ANN was trained using
22 acoustic features extracted from a data collection containing healthy and
non-healthy vocal phonations. Shahid & Singh (2020) created a PD predic-
tion progression system based on UPDRS, which applies principal component
analysis to the dataset to solve its multicollinearity problems and reduce its
dimensionality. The resulting data make the input vector to the proposed
deep neural network (DNN) algorithm, and along with a tuned parameter
norm penalty, the DNN evaluates PD’s progression by predicting motor and
total UPDRS scores. Wodzinski et al. (2019) used the residual network
(ResNet) deep learning model for PD detection from voice recordings. The
authors determined the audio recordings’ spectrum and sent that informa-
tion into the ResNet architecture. ResNet had been pre-trained on data from
the ImageNet (Russakovsky et al., 2015) and Saarbrüken voice disorder (Al-
hussein & Muhammad, 2018) databases. Moreover, the data collection was
augmented in the time domain to avoid overfitting. The system was tested on
the PC-GITA (Orozco-Arroyave et al., 2014) database containing 50 healthy
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and 50 non-healthy subjects.
A significant number of existing works utilize ELM-based methods. An-

ter et al. (2023) created a regression model for monitoring PD progression
using voice data. The proposed model contains a feature selection mecha-
nism based on a binary version of the ant lion optimizer and a differential
evolution ELM variant responsible for predicting UPDRS scores. Chen et al.
(2016) proposed a hybrid system for early PD diagnosis using the kernel
ELM (KELM) algorithm. The model applies the MRMR feature selection
algorithm to the dataset before sending the data to a KELM classifier. Wang
et al. (2017) developed a PD detection method based on a dataset contain-
ing voice recordings. It utilizes a binary version of the adaptive artificial
bee colony algorithm for feature selection and a kernel-based weighted ELM
variant for the classification task between healthy and non-healthy subjects.
While a non-linear mapping of the kernel function is used to enhance the
extent of linear separation, a weighted approach is taken to address the issue
of unbalanced data. Moreover, a continuous version of the adaptive artificial
bee colony algorithm is used for parameter tuning. Guatelli et al. (2023)
utilized voice signal spectrograms and created a PD detection system that
utilized the ELM classifier. Agarwal et al. (2016) developed a PD detection
method that used speech data from 10 healthy and 20 non-healthy subjects.
The data underwent a pre-processing stage where 26 features were extracted
and formed the input vector to an ELM-trained neural network. Shahsavari
et al. (2016) applied a hybrid particle swarm optimization algorithm as a
feature extraction method in a PD data collection containing entries from
patients and non-patients. Then, the extracted data were introduced as in-
put to an ELM classifier. Das & Nanda (2023) combined cuckoo search with
the voting ensemble weighted ELM algorithm. Weighted ELM is used in
datasets containing imbalanced entries. The voting ensemble was adopted
to circumvent the inconsistent results from weighted ELM due to the ran-
dom initialization of input weights. The cuckoo search was used for feature
extraction, while the voting ensemble weighted ELM approach classifies un-
known data into two categories (healthy and non-healthy). The system was
tested in the Oxford PD detection dataset (Little et al., 2008).

Several existing systems are based on ensemble-based approaches. Tunc
et al. (2020) evaluated PD progression from patients’ voice recordings. Their
system adopted a two-phase architecture where the first phase involved a
feature selection process using the Boruta algorithm. The second stage re-
ceives the selected features as an input vector to the extreme gradient boost-
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ing algorithm responsible for PD disease severity assessment. Jatoth et al.
(2022) created a smart healthcare system based on fog technology. It detects
and monitors PD based on Parkinson’s telemonitoring voice dataset from
the University of California Irvine (UCI) machine learning repository Dua
& Graff (2017). The system utilizes an enhanced version of the synthetic
minority oversampling technique (SMOTE) to deal with the dataset’s class
imbalance problem. Also, it uses the extreme gradient boosting algorithm
for the classification task, which implements gradient-boosting decision trees
(DTs) (Chen et al., 2015). Hireš et al. (2022) used a CNN ensemble for
detecting PD in a collection of data containing voice recordings from 100
participants. The data pre-processing procedure involved transforming these
recordings into the time-frequency domain and converting them into images.
Then, the Gaussian blurring filter was applied to all figures to remove ex-
treme outliers. These filtered images were introduced as input to the CNN
ensemble, which classified the participants into two categories (healthy and
non-healthy). Meghraoui et al. (2021) created a novel pre-processing method
for PD detection based on data collections containing voice recordings, which
applies relevance analysis on PD’s disturbance, bio-mechanical, and neurolog-
ical features. The proposed system’s classification process involved utilizing
three machine learning methods with RF achieving the best results.

EHO-ELM algorithm was proposed for the classification task in the Sakar
et al. (2013) data collection based on earlier works by Christou (2023); Chris-
tou et al. (2023). They have shown that utilizing MCUs in all layers of an
ELM-trained SLNN can significantly improve its generalization ability. Al-
though the neural network-based approaches presented above get very good
results in various datasets, they do not consider higher-order units, which
can further increase the network’s generalization ability.

A significant number of machine learning methods that can be used for
classifying pre-processed voice recordings from PD and healthy subjects in-
clude the following ten neural network training algorithms based on the
original back-propagation (BP) by Werbos (1974). The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm is a member of the quasi-Newton family
of methods for unconstrained numerical optimization, which determines the
search direction using second-order derivatives. The quasi-Newton meth-
ods face two major issues. The first issue is the calculation complexity
of the Hessian and its inverse, while the second is large memory require-
ments. BFGS solves the calculation complexity problem by approximating
Hessian’s inverse. The memory requirements are reduced by employing an
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update process where the approximated Hessian is updated after each stage
in the optimization procedure. BFGS utilizes the second-order derivative
update formula by Broyden (1970a,b), Fletcher (1970), Goldfarb (1970), and
Shanno (1970) (Schweitzer et al., 2000). The Powell-Beale conjugate gra-
dient (PBCG) method is a conjugate gradient (CG) variant containing an
automatic restart mechanism that considers the objective function. CG is a
suitable algorithm for minimizing functions with a large number of variables
because it does not store any matrices. The convergence rate of CG is lin-
ear unless its iterative process is occasionally restarted (Powell, 1977). The
Fletcher-Reeves CG (FRCG) is a quadratically convergent gradient approach
for finding an unconstrained local minimum of a multivariate function utiliz-
ing the conjugate direction update formula by Fletcher-Reeves (Fletcher &
Reeves, 1964; Scales, 1985). Similar to FRCG, the Polak-Ribiére CG (PRCG)
is a CG variant that uses the conjugate direction update formula proposed
by Polak-Ribiére (Polak & Ribiere, 1969). The scaled conjugate gradient
(SCG) approach has a super-linear convergence rate, employs second-order
neural network information, and requires O(N) memory usage (N denotes
the neural network weights number). SCG is at least an order of magnitude
faster than traditional BP and requires no user-defined parameters (Møller,
1993). The steepest descent (SD) is one of the simplest function minimization
methods but suffers from slow convergence (Cauchy et al., 1847; Meza, 2010).
Gradient descent with momentum (GDM) enhances the original gradient de-
scent (GD) algorithm by adding a momentum that permits the network to
disregard minor features on the error surface. This way, GDM can bypass
local minimums and converge faster (Polyak, 1964). Similarly, GD with mo-
mentum and adaptive learning rate (GDMALR) also enhances the original
GD algorithm by adding momentum and an adaptive learning rate. One-
step secant (OSS) is an approach between quasi-Newton and CG methods.
It has fewer computational and memory requirements than BFGS, but it
has a bit higher computational and memory requirements than CG-based
algorithms. Its main advantage lies in calculating the new search direction,
which does not require a matrix inverse calculation Battiti (1992). Resilient
BP (RPROP) (Riedmiller & Braun, 1993) enhances GD by applying a local
adaptation of the weight updates according to the error function’s behavior.

Other non-BP-based approaches include the SVM algorithm, invented in
the early 1990s as a non-linear solution for classification and regression prob-
lems. It initially maps the input data from a binary classification problem
to a high-dimensional feature space. Then, with the help of a hyperplane,
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it can classify unknown data. The hyperplane is created by maximizing its
distance from the nearest data points which belong to the first or second cat-
egory (Cortes & Vapnik, 1995; Samui et al., 2017; Vapnik, 1998). DTs are
hierarchical decision support models which utilize tree-like representations
of options and their potential outcomes Von Winterfeldt & Edwards (1986).
Finally, the online sequential ELM (OS-ELM) algorithm is a modified ELM
version that works with sequential data (Huang et al., 2005).

3. Related work

The “Related work” section initially presents the cubic and MCU struc-
tures developed by Gurney (1989). The latter defines the neuron types used
for both layers of the SLNNs that are evolved using the EHO-ELM method.
Then, the ELM training algorithm and its extension for MCUs (MCU-ELM)
are analyzed, followed by a presentation of the typical structure of a GA.
MCU-ELM trains a series of MCU SLNNs, which are evolved utilizing the
custom GA by the EHO-ELM method shown in the last sub-section of the
“Related work”. EHO-ELM automatically selects the SLNN with the best
generalization performance, which contains an optimal combination of hid-
den layer weights and sub-cube units for all neurons.

3.1. The cubic unit structure

The main difference between the cubic units by Gurney (1989) compared
to low-order ones is that they are more advanced structures containing a
higher number of weights. Unlike low-order neurons, their weight assignment
does not follow the 1−1 rule (one weight per input). Instead, they follow the
formula wc

no = 2n, n ∈ N with the c superscript denoting the cubic neuron
type and n the inputs’ number. Cubic neurons are regarded as site values in
a hyper-cube where the number of inputs defines the hypercube’s dimension.
An orthographic projection of a tesseract denoting the weight assignment of
a 4-input cubic neuron is depicted in Fig. 1.
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Figure 1: A tesseract. This figure shows the weight assignment of a 4-input neuron as site
values on a tesseract.

Cubic neurons’ weight assignment is defined by the probability function
in (1). The n symbol denotes the number of inputs, while xi defines the
current input. The µ = µ1, µ2, . . . , µn inside product term (1+µixi) changes
its plus arithmetic operator to minus and vise-versa. The procedure involves
converting µ to a binary string format and assigning the plus or minus op-
erators for each 1 or 0 found inside this binary string. Also, cubic neurons
require normalization of the input vector, usually by dividing all input values
by the highest absolute input value (Gurney, 1989).

Pµ =
1

2n

n∏
i=1

(1 + µixi) (1)

The cubic unit activation defined in formula (2) multiplies every assigned
weight with its probability calculated using equation (1). Afterward, it adds
them together and calculates their normalized average using 1

|wmaxc|
term.

The normalization procedure involves dividing every weight (wc
µ) with the

highest absolute weight value (|wc
max|).
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ac =
1

|wc
max|2n

2n−1∑
µ=0

wc
µ

n∏
i=1

(1 + µixi) (2)

The activation is then introduced as input to the transfer (activation)
function g, which calculates the neuron’s output value y. The procedure is
visualized in Fig. 2 (Gurney, 1989).

Figure 2: Cubic unit architecture. The input vector [x1, . . . , xn] is introduced to the cubic
unit and is expanded using the probability function in (1). The probability function’s
outputs are multiplied element-wise with the cubic weights and added together. Then,
they are averaged with the help of a normalized average creating the activation ac. The
activation is introduced as input to the transfer function g which produces the neuron’s
output value y (Christou et al., 2023).

3.2. The MCU structure

The number of weights in the cubic unit is defined by the formula wc
no = 2n

first introduced in section 3.1 where it is observed that the number of weights
increases exponentially to a linear increase to the number of inputs (n). This
fact makes them practically unusable for problems requiring many inputs due
to the large increase in memory and computational requirements. To solve
this issue, Gurney (1989) created the MCU, which divides a high-dimension
hypercube into a series of sub-cubes with low dimensions. The MCU signifi-
cantly reduces the computational and memory requirements compared to the
cubic unit and scales well. The number of weights is defined using formula
wmc

no = pno =
∑q

j=1 2
dj , (j, dj, q) ∈ N where the mc superscript denotes the

MCU type, and q is the number of sub-cubes. Vector d = [d1, d2, . . . , dq]
incorporates every sub-cube’s dimension with current sub-cube dimension dj
deriving from d.

The MCU activation function is defined in equation (3) where the acti-
vation of each sub-cube is added together and normalized by dividing with
the maximum absolute weight value ( 1

wmc
max

).

12



amc =
1

|wmc
max|

q∑
j=1

1

2dj

2dj−1∑
µ=0

wmc
µ

dj∏
i=1

(1 + µixi) (3)

The MCU activation is then introduced as input to the transfer (activa-
tion) function g, which calculates the neuron’s output value y. The procedure
is visualized in Fig. 3 (Gurney, 1989).

Figure 3: MCU unit architecture. The input vector [x1, . . . , xn] is introduced to the
MCU unit, which assigns them to several sub-cubes. The input vector in each sub-cube
is expanded using the probability function in (1). The probability function’s outputs
are multiplied element-wise with the sub-cube’s weights, added together, and averaged,
creating each sub-cube’s activation, which in turn are added together and normalized by
dividing with the maximum absolute weight value from all sub-cubes. The MCU activation
is introduced as input to the transfer function g, which produces the neuron’s output value
y (Christou et al., 2023).

3.3. The ELM algorithm

The main difference of the ELM training algorithm is that it does not
follow an iterative approach like BP-based methods and can work with
non-differentiable transfer functions Huang et al. (2004, 2006). Moreover,
Huang et al. (2006) utilized an incremental constructive approach to prove
that SLNNS can have universal approximation capability by randomizing
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their hidden layer weights and thresholds and calculating their output layer
weights. An ELM trainable SLNN has the mathematical model defined in
formula 4



g


x1,1

...
x1,n


T w

l
1,1
...

wl
n,1

+ θ1

 . . . g


x1,1

...
x1,n


T w

l
1,h
...

wl
n,h

+ θh


... · · · ...

g


xN,1

...
xN,n


T w

l
1,1
...

wl
n,1

+ θ1

 . . . g


xN,1

...
xN,n


T w

l
1,h
...

wl
n,h

+ θh




N×h

·

β
l
1,1 . . . βl

1,m
... . . .

...
βl
h,1 . . . βl

h,m


h×m

=

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m


N×m

(4)

The activation function is declared with the symbol g while

x =

x1,1 . . . x1,n
... . . .

...
xN,1 . . . xN,n


N×n

∈ RN×n is the matrix containing the input

data, wl =

w
l
1,1 . . . wl

1,h
... . . .

...
wl

n,1 . . . wl
n,h


n×h

∈ Rn×h is the matrix containing the

hidden layer weights and θ = [θ1 . . . θh] ∈ Rh is the hidden layer thresholds
vector. The traditional low-order unit types are declared using the l
superscript, n declares the number of neuron inputs, h is the number
of hidden layer units, and N denotes the number of input patterns.

The matrix βl =

β
l
1,1 . . . βl

1,m
... . . .

...
βl
h,1 . . . βl

h,m


h×m

∈ Rh×m stores the output layer

weights values where m declares the number of output neurons and the

T =

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m


N×m

matrix stores SLNNs target values.
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Algorithm 1 describes the structure of ELM, beginning with the random-
ization of the hidden layer weights and thresholds (lines 1 and 2). Then, it
creates the hidden layer output matrix H, which stores the output values
for each training entry to the network. The next step (line 4) contains the
SLNN’s target output matrix, while the last step calculates the output layer
weights matrix using the multiplication of the Moore-Penrose pseudo-inverse
of H with T .

Algorithm 1 : ELM

1: wl =

w
l
1,1 . . . wl

1,h
... . . .

...
wl

n,1 . . . wl
n,h


n×h

2: θ = [θ1, . . . , θh]

3: H =



g


x1,1

...
x1,n


T w

l
1,1
...

wl
n,1

+ θ1

 . . . g


x1,1

...
x1,n


T w

l
1,h
...

wl
n,h

+ θh


... · · · ...

g


xN,1

...
xN,n


T w

l
1,1
...

wl
n,1

+ θ1

 . . . g


xN,1

...
xN,n


T w

l
1,h
...

wl
n,h

+ θh




N×h

4: T =

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m


N×m

5: βl = H†T

3.4. The MCU-ELM algorithm

MCU-ELM extends the traditional ELM algorithm to SLNNs having
MCUs in both their layers (hidden and output). It was first introduced by
Christou (2023), and its mathematical model is defined in equation 5. The P
symbol defines MCU’s probability function in this model, while g is the ac-
tivation function. The MCU activations are stored in matrix amc ∈ RN×h =

15





amc
1,1


x1,1

...
x1,n


T

,

 wmc
0,1
...

wmc
ph−1,1


 . . . amc

1,h


x1,1

...
x1,n


T

,

 wmc
0,h
...

wmc
ph−1,h




... · · · ...

amc
N,1


xN,1

...
xN,n


T

,

 wmc
0,1
...

wmc
ph−1,1


 . . . amc

N,h


x1,1

...
x1,n


T

,

 wmc
0,h
...

wmc
ph−1,h





N×h

.

In this matrix, x =

x1,1 . . . x1,n
... . . .

...
xN,1 . . . xN,n


N×n

∈ RN×n defines the matrix

containing all inputs while wmc =

 wmc
0,1 . . . wmc

0,h
... . . .

...
wmc

ph−1,1 . . . wmc
ph−1,h


ph×h

∈ Rph×h con-

tains the hidden layer weights. The MCU types are declared using the mc
superscript, n declares the number of neuron inputs, h is the number of hid-
den layer units, N denotes the number of input patterns, ph denotes the
number of hidden layer weights, while po is the output layer weights num-

ber. The matrix βmc =

 βmc
0,1 . . . βmc

0,m
... . . .

...
βmc
po−1,1 . . . βmc

po−1,m


po×m

∈ Rpo×m stores the

output layer weights where m declares the output units number and matrix

T =

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m


N×m

∈ RN×m stores the target values.


P1,0

(
g(amc

1,1), . . . , g(a
mc
1,h)

)
. . . P1,po−1

(
g(amc

1,1), . . . , g(a
mc
1,h)

)
... · · ·

...

PN,0

(
g(amc

N,1), . . . , g(a
mc
N,h)

)
. . . PN,po−1

(
g(amc

N,1), . . . , g(a
mc
N,h)

)

N×po

·

 βmc
0,1 . . . βmc

0,m
... . . .

...
βmc
po−1,1 . . . βmc

po−1,m


po×m

=

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m


N×m

(5)

Algorithm 2 shows the MCU-ELM structure, starting with randomizing
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the hidden layer weights (line 1). Afterward, it creates the hidden layer
output matrix H, which stores the output values for each training entry to
the network. Line 4 shows the SLNN’s target output matrix, and the fourth
step calculates the output layer weights matrix using the multiplication of
the Moore-Penrose pseudo-inverse of H with T .

Algorithm 2 :MCU-ELM

1: wmc =

 wmc
0,1 . . . wmc

0,h
... . . .

...
wmc

ph−1,1 . . . wc
ph−1,h


n×h

2: H =

 P1,0

(
g(amc

1,1), . . . , g(a
mc
1,h)

)
. . . P1,po−1

(
g(amc

1,1), . . . , g(a
mc
1,h)

)
... · · · ...

PN,0

(
g(amc

N,1), . . . , g(a
mc
N,h)

)
. . . PN,po−1

(
g(amc

N,1), . . . , g(a
mc
N,h)

)


N×po

3: T =

 t1,1 . . . t1,m
... . . .

...
tN,1 . . . tN,m


N×m

4: βmc = H†T

3.5. The GA

The GA originally developed by Holland (1975) and his colleagues was
inspired by Charles Darwin’s biological evolution theory. It is a stochastic
approach that can be used in many optimization problems. A possible so-
lution to an optimization problem is encoded as a chromosome, and each
parameter is encoded as a gene. The population’s individuals are evaluated
using a fitness function. The best ones have the highest probability of being
selected for reproduction, producing the offspring of the evolution process.
Afterward, a small percentage of the offspring undergoes a mutation pro-
cedure involving random chromosome changes. The process repeats until
specific ending criteria are met. The structure of a typical GA can be seen
in Algorithm 3 (Mirjalili, 2019; Kramer & Kramer, 2017).

It begins by creating the initial population, which contains a series of
possible solutions (line 1). The original GA by Holland encoded each so-
lution to a binary string (binary encoding), with each bit representing one
gene. Alternative encoding schemes include permutation, real value, and
tree encoding. In permutation encoding, the chromosome contains integer
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values representing positions in a sequence, and real value encoding has real
values. Real value encoding is a popular scheme adopted in GAs for opti-
mizing neural network weights. An individual in tree encoding represents a
tree of functions or commands and is a popular choice in evolving programs
or expressions (Katoch et al., 2021).

Algorithm 3 : GA

1: Population← create(Popno)
2: loop
3: Populationevaluate = evaluate(Population)
4: if (criterionstop = true) or (solutionbest = true) then
5: solutionbest ← best(Populationevaluate)
6: return solutionbest

7: end if
8: Populationselect ← select(Populationevaluate)
9: Populationcrossover ← crossover(Populationselect)

10: Population← mutation(Populationcrossover)
11: end loop

After creating the initial population, the evolution process begins (line
2), where the initial population is evaluated according to a fitness function
(line 3). The following line checks if the stopping criteria have been achieved
or whether the optimal solution has been found. In case this condition is
satisfied, the selected optimal solution (line 5) is returned (line 6). If the
stopping criteria are unsatisfied, the evolution process continues with the
selection operator (line 8) (Konak et al., 2006).

Natural selection allows fitter individuals to have higher probabilities for
survival and reproduction. The roulette wheel selection mechanism simulates
this idea by assigning selection probabilities to each chromosome according
to their fitness values. Fitter chromosomes have higher chances for reproduc-
tion, while chromosomes with low fitness scores have low chances of getting
selected. Low-fitness chromosomes are not excluded in order to increase
the population’s diversity. Other selection mechanisms include tournament,
rank, and Boltzmann selection (Mirjalili, 2019).
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Figure 4: Roulette wheel selection mechanism. In the roulette wheel selection operator,
all chromosomes are assigned a selection percentage proportional to their fitness value.
The above pie chart visualizing the selection probabilities of five chromosomes shows that
the fourth chromosome has the highest selection probability (30%).

The crossover procedure (line 9) reproduces the parent chromosomes se-
lected in the previous phase. The one-point crossover operator depicted in
Fig. 5 chooses a random crossover point and mutually exchanges genetic in-
formation between the two parent chromosomes. This way, two offspring are
produced. Alternative reproduction processes involve multi-point, uniform,
and masked crossover operators (Mirjalili, 2019).

Figure 5: One-point crossover. The one-point crossover operation involves a mutual ex-
change of information between two parent chromosomes. The result of this procedure is
the creation of two offspring.

Finally, the role of the mutation operator (line 10) is to keep the popu-
lation diverse and help the GA avoid local solutions by altering one or more
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genes from a small number of randomly selected offspring. The bit mutation
operator utilized in binary encoding where each mutated bit is changed from
0 value to 1 and vice-versa is depicted in Fig. 6 (Mirjalili, 2019).

Figure 6: Bit mutation. The bit mutation operation changes one or more randomly
selected genes in a binary string-encoded offspring chromosome. The value changes from
1 to 0 and vice-versa.

3.6. The EHO-ELM algorithm

The EHO-ELM algorithm hybridizes MCU-ELM with a modified GA.
This method aims to create an optimal SLNN with MCUs in all its layers by
tuning its hidden layer weights and finding an optimal sub-cube combination
for all its neurons. The optimized MCU-ELM network will solve a specific
classification or regression problem. The structure of EHO-ELM is described
in Algorithm 4.

Algorithm 4 : EHO-ELM

1: Population← create(Popno)
2: loop
3: Populationevaluate = evaluate(Population)
4: solutionbest ← best(Populationevaluate)
5: if solutionbest is unchanged for 5 generations then
6: return solutionbest

7: end if
8: Populationselect ← select(Populationevaluate

2
)

9: Populationcrossover ← crossover(Populationselect)
10: Population← mutation(Populationcrossover)
11: end loop
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EHO-ELM begins by creating the initial population containing a set of
SLNNs with MCUs in all their layers (line 1). Each chromosome in the
initial population represents an SLNN. It encodes two types of information:
the weight values for the hidden layer MCUs and the MCU structure from
both its layers (hidden and output). The information regarding each MCU is
encoded as a gene in the chromosome with a 25 maximum sub-cube size for
every MCU. The population’s size (Popno) is calculated automatically using
equation 6 by taking into consideration the number of hidden neurons (h).

Popno =

{
50, 2h > 50

2h, 0 > 2h ≤ 50
(6)

After creating the initial population, the evolution process starts (line 2)
with the first generation of the modified GA. The evaluation process (line 3)
assigns a fitness value to each chromosome. This value is computed by train-
ing all SLNNs using MCU-ELM and calculating their classification accuracy
(acc) in classification problems or mean square error (MSE) in regression
problems. The SLNNs having the highest acc or the lowest MSE values
are considered fitter. The acc values are calculated using formula 7 where k
denotes the folds’ number. The symbol pat defines the total number of input
patterns, while err defines the erroneously classified patterns regarding the
current fold.

acc =
1

k

k∑
i=1

(
1− err

pat

)
. (7)

TheMSE values are calculated using formula 8 where k denotes the folds’
number and pat is the input patterns’ number. The j target network output
value and the j network output value for fold i are defined using terms tji
and yji .

MSE =
1

kpat

k∑
i=1

( pat∑
j=1

(tji − yji )
2
)

(8)

In line 4, the best solution is selected according to the fitness values
calculated in the previous step. If the best solution remains the same for
five iterations of the GA (generations), as seen in line 5, it returns the best
network found (line 6). Alternatively, the evolution process continues with
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selecting 50% of the population (line 8) for reproduction. The selection is
made according to their fitness values calculated in step 3.

The reproduction process uses a custom crossover operator that creates
the offspring by mutually exchanging sub-cubes between two parent chromo-
somes (Fig 7).

Figure 7: EHO-ELM crossover operator. The EHO-ELM crossover operator mutually
exchanges information between two parent chromosomes depicted with red and green
colors. The exchange uses equal probability between the two parent individuals and may
produce offspring with different MCU input sizes. Due to this reason, an adjustment
mechanism is utilized. The adjustment mechanism automatically creates (blue color) or
removes genes for retaining offspring validity. In this example, the maximum acceptable
sub-cube size is 5.

The exchange is done according to a probability that is the same for
both parent sub-cubes. This procedure might create MCUs with different
input sizes than the parent ones. Due to this reason, the custom crossover
operator automatically adjusts the offspring chromosomes. Suppose an MCU
in the offspring chromosome contains more inputs. In that case, the operator
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automatically removes random sub-cubes from the MCU until the number of
inputs becomes the same or less than the parent one. Suppose the number
of inputs is less than the parent MCU and the difference between the parent
and child one is higher than the maximum allowed sub-cube size. In that
case, the operator creates a random sub-cube containing a randomly created
input size and weights. The created MCU is then placed in a random location
inside the child MCU. This procedure is repeated until the difference in the
number of inputs between the parent and child genes becomes equal to or
less than the maximum allowed sub-cube input size. If the last condition
is satisfied, a random sub-cube is created with the inputs taken from the
difference between the parent and child genes. This sub-cube is then placed
in a random location inside the child gene. The above procedure creates valid
SLNNs and tunes the hidden layer weights.

A few hidden layer neurons are randomly selected for mutation. The self-
adaptive mutation operator changes the weight values from one sub-cube for
each selected MCU. It is defined in equation 9 and works by considering
the fitness value of the best chromosome found at each generation. Suppose
it is the first generation (generation = 1) of the evolution process or a
better chromosome has been found ((generation > 1) ∧ (fitnesscurrent >
fitnessprevious)). In that case, the mutation rate receives its lowest value
(10%). If the crossover operation has not produced better offspring, then
the mutation rate increases by 20% (µrate = µrate + 20%) until it reaches its
maximum value (50%).

µrate =


µrate = 10%, (generation = 1) ∨ ((generation > 1)

∧(fitnesscurrent > fitnessprevious))

µrate = µrate + 20%, f itnesscurrent ≤ fitnessprevious

µrate = 50%, µrate ≥ 50%

(9)

4. EHO-ELM for PD detection

The proposed EHO-ELM-based method visualized in Fig. 8 utilizes the
“Parkinson’s disease classification” dataset (Sakar et al., 2018) from UCI
machine learning repository (Dua & Graff, 2017) containing 753 extracted
features from the voice recordings of 188 patients (107 male and 81 female)
having an age range between 33 and 87 years. The control group contained
64 healthy individuals (23 male and 41 female) aged between 41 and 82.
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The dataset contained one additional column containing each participant’s
ID number, which has been removed.

Figure 8: EHO-ELM for PD detection system architecture. The voice signals are recorded
from 188 non-healthy and 64 healthy individuals. A series of feature extraction processes
categorized into six sets creates 753 features. The MRMR features selection process is
utilized to select the 50 best ones, which form the input vector to an EHO-ELM trained
SLNN with h hidden neurons responsible for classifying the participants into two categories
(PD patients and normal).

The “Parkinson’s disease classification” dataset contains six extracted
feature sets. The first set includes a group of features termed “baseline
features” (jitter, shimmer, fundamental frequency parameters, harmonicity
parameters, recurrence period density entropy, detrended fluctuation anal-
ysis, and pitch period entropy), popular choices for PD feature extraction.
The second group, termed “time-frequency features” (speech intensity, for-
mant frequencies, and bandwidth-based), contains features from the speech
signals’ spectrograms. The third group has extracted features based on the
Mel-frequency cepstral coefficients that closely resemble the human ear’s ef-
ficient filtering abilities. The fourth group contains wavelet transform-based
features received from speech samples’ raw fundamental frequency contour.
The fifth set has vocal fold features, while the final feature set is extracted
using Q-factor wavelet transform. The latter is a fully discrete and over-
complete wavelet transform method Sakar et al. (2018).

The dataset underwent a feature selection method using the MRMR al-
gorithm, which selected the 50 best features. MRMR selects a sub-feature
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set containing the maximum correlation with the class (output) and the min-
imum correlation between the selected features (Ding & Peng, 2005). The
selected feature subset is then introduced as input to the EHO-ELM algo-
rithm, classifying the subjects into two categories (non-healthy and healthy).

5. Experimental results

The EHO-ELM algorithm was tested with ten BP variants (BFGS,
PBCG, FRCG, PRCG, SCG, SD, GDM, GDMALR, OSS, and RPROP),
SVM, DT, ELM, and two ELM-based approaches (OS-ELM and MCU-
ELM). The “Parkinson’s disease classification” dataset was initially divided
with 80% of the data forming the training set, and the rest 20% was reserved
as a separate test set. This setup was utilized in the SVM, DT, ELM, and
all ELM-based variants. The training set was further divided into training
and validation sets using 10-fold cross-validation. All BP-based approaches
used the training/validation/test setup to find the optimal number of
training epochs and avoid over-fitting. It was also used in the proposed
EHO-ELM algorithm for calculating each individual’s fitness using unknown
(validation) data.

Table 1: Experimental Setup Parameters

Parameter Name Symbol Values/Types

Linear Neuron Weights wl [−1, 1]n, n ∈ N∗

Multi-Cube Neuron Weights wmc [−1, 1]pno , pno ∈ N∗

Inputs x [−1, 1]n, n ∈ N∗

Hidden Layer Neurons’ Transfer Function g sigmoid
Output Layer Neurons’ Transfer Function g identity
Hidden Layer Neurons No h 50
Folds No k 10
Experiment Sets expNo 10

MCU-ELM’s MCUs Sub-Cube Dimension dMCU−ELM
j 1, j ∈ N∗

EHO-ELM’s MCUs Sub-Cube Dimension dEHO−ELM
j [1, 2, . . . , 5], j ∈ N∗

The parameters utilized for the experiments’ execution are summarized
in Table 1. In the neural network-based methods, all weights and thresholds
for all neuron types (traditional linear neurons and MCUs) were randomized
inside the [−1, 1] interval using real values from the uniform distribution.
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The number of hidden layer units was fixed to 50 nodes, with all of them
having the sigmoid transfer function. The activation function for the output
layer units was the identity function. The experiments in all neural network-
based methods were repeated ten times to avoid bias in the results due to
the random initialization of the hidden layer weights and thresholds. The
MCU-ELM-trained network contained one-dimensional sub-cubes (21) in all
MCUs, while the EHO-ELM-trained network’s sub-cube dimension varied
from 1 to 5. Finally, the radial basis function (RBF) kernel was selected for
the SVM algorithm.

The comparison of EHO-ELM with the 15 methods mentioned above
in terms of classification accuracy is visualized in Table 2. It can be seen
that the proposed EHO-ELM-based method got the highest acc (87.55%)
compared to the other existing machine learning methods.

Table 2: Comparison Results

BFGS PBCG FRCG PRCG SCG GD GDM GDMALR
69.45% 66.45% 69.91% 66.86% 65.43% 57.87% 57.58% 64.91%

OSS RPROP SVM DT OS-ELM ELM MCU-ELM EHO-ELM
68.53% 86.78% 86.84% 68.42% 86.45% 86.71% 86.45% 87.55%

The Wilcoxon signed-ranked test was adopted for evaluating the statis-
tical significance of the results presented in Table 2. It is a non-parametric
statistical hypothesis test that uses two matched samples to compare the lo-
cations of two populations or assess a population’s location based on a data
sample (Wilcoxon; Conover, 1999). The result from this test is a probabil-
ity (p-value) that the two compared populations are identical. According
to Wilcoxon signed-rank test results presented in Fig. 9 from comparing
EHO-ELM with the 15 machine learning methods, EHO-ELM’s results are
statistically significant since the p-value from all compared methods was less
than 5%.
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Figure 9: Wilcoxon signed-rank test results. The results from the Wilcoxon signed-rank
test between the proposed EHO-ELM-based method and 15 machine learning methods in
the “Parkinson’s disease classification” dataset are depicted in this logarithmic plot. All
the p-values in the compared methods were less than 5%, indicating that the results were
statistically significant.

6. Discussion

An automated PD diagnosis tool from speech signals can be a valuable
asset for health specialists because it can help them in a more accurate early
diagnosis of the disease since only 85% of the cases are diagnosed correctly
by PD specialists (Rizzo et al., 2016). PD patients have a long lifespan, and
besides the pathological problems (tremors, stiffness in the patient’s limbs,
gait and balance issues), PD patients also face psychological problems like
anxiety and depression (Marie, 2020; Factor & Weiner, 2007). Due to these
severe side effects, early diagnosis of the disease is important because it can
increase patients’ quality of life using anti-parkinsonian medication. Studies
have shown that patients who received anti-parkinsonian medicines have a
better quality of life than untreated ones (Grosset et al., 2007; Rees et al.,
2018).

The EHO-ELM hybrid algorithm was selected as a classifier for the
“Parkinson’s disease classification” dataset. It has an evolution process
that automatically optimizes the hidden layer weights and finds an optimal
sub-cube combination for all network neurons. At the same time, all
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parameters of the evolution process are self-adaptive. One reason for select-
ing EHO-ELM is that it retains ELM’s simplicity and requires minimum
parameter tuning from the user’s perspective (the user needs only to choose
the number of hidden layer units). The experimental results in the previous
section showed that EHO-ELM achieved the highest accuracy percentage
compared to 15 machine learning methods. The significance of these results
was verified using the Wilcoxon sign-rank statistical test, where the p-value
was less than 5% in all cases.

EHO-ELM is a hybrid algorithm combining MCU-ELM with a modified
GA for improving MCU-ELM’s generalization performance. Although this
is evident in the experimental results in Table 2, it comes with a significant
performance cost. The evolution process requires many SLNNs to be trained
with MCU-ELM at every iteration (generation) of the GA. The training
process is computationally intensive and time-consuming. The solution to
this problem was adopting a parallel processing strategy for the EHO-ELM
algorithm, enabling it to work in multi-core systems by using a parallel GA
that can significantly reduce training time.

7. Conclusion

The proposed hybrid MCU-ELM-based approach was selected as a clas-
sifier for the “Parkinson’s disease classification” dataset containing entries
from speech signals. These signals were received from PD patients and nor-
mal ones. The signals underwent a feature extraction and selection stage
with 50 features forming the input vector to the EHO-ELM algorithm. This
algorithm was selected for the classification task between PD and normal in-
dividuals because it can optimize the hidden layer weights and find an opti-
mal combination of sub-cube units for all network neurons. The higher-order
units by Gurney (1989) were chosen due to their advanced generalization
performance in ELM-based trained SLNNs as was experimentally shown in
earlier works from Christou (2023); Christou et al. (2023).

Section 5 compared EHO-ELM with 15 existing methods and experimen-
tally verified that the proposed method is better regarding acc. These results
were statistically significant according to the Wilcoxon signed-ranked test.
Finally, future work involves converting HO-ELM to multi-layer networks
and creating a larger PD dataset containing a higher number of participants’
speech signals.
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